日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (12): 1437-1446.doi: 10.3969/j.issn.2097-2806.2024.12.005
收稿日期:
2024-01-24
修回日期:
2024-11-27
出版日期:
2024-12-22
发布日期:
2024-12-25
Xuelan Gu*(),Hong Zhang,Xue Xiao,Zhuang Zhou,Jue Qu,Yibing Shi
Received:
2024-01-24
Revised:
2024-11-27
Online:
2024-12-22
Published:
2024-12-25
Contact:
* E-mail: 摘要:
文章旨在系统评价4-己基间苯二酚(4-HR)的皮肤美白功效,并探索其新的作用机理。临床测试以祛斑美白化妆品功效原料研究技术指导原则为指南,开展了一项为期8周、安慰剂对照的人体测试研究,结果表明精华露中添加0.4% 4-HR能显著提高皮肤ITA°值,降低皮肤黑色素含量。表面涂抹等量4-HR能明显提高体外重组3D黑素模型的表观亮度,显著减少黑色素含量。基于角质细胞的转录组学分析提示被4-HR影响表达的基因除参与皮肤发育过程、角质化过程,还影响氧化活性调控、细胞自噬功能等。进一步体外研究证明,4-HR能够抑制蓝光诱导的活性氧水平,减轻角质形成细胞的氧化应激反应。在人角质-黑素细胞共培养模型中,4-HR不仅能降低黑素含量,同时还能明显提高细胞自噬标记物LC3表达。加入自噬抑制剂氯喹后,4-HR对黑色素含量的抑制作用也随之显著降低。研究表明,添加0.4% 4-HR的精华露具有良好的美白功效,4-HR可能以减轻氧化应激、调节细胞自噬功能的新作用机理而起到美白作用。
中图分类号:
顾学兰, 张红, 肖雪, 周壮, 瞿珏, 施奕冰. 4-己基间苯二酚的美白功效及新作用机理探讨[J]. 日用化学工业(中英文), 2024, 54(12): 1437-1446.
Xuelan Gu, Hong Zhang, Xue Xiao, Zhuang Zhou, Jue Qu, Yibing Shi. Skin brightening benefit of 4-hexylresorcinol in vivo and in vitro and its underlying mechanism[J]. China Surfactant Detergent & Cosmetics, 2024, 54(12): 1437-1446.
[1] | Li N, Li E, Chen H, et al. Advances of functional components in whitening cosmetic[J]. China Surfactant Detergent & Cosmetics, 2024, 54 (1) : 80-89. |
[2] | Chaudhuri R. Cosmeceuticals and active cosmetics[M]. Boca Raton: CRC Press, 2015: 71-82. |
[3] | Fidalgo J, Deglesne P A, Arroya R, et al. 4-Hexylresorcinol a new molecule for cosmetic application[J]. Journal of Biomolecular Research & Therapeutics, 2019, 8 (1) : 10-12. |
[4] | Won Y K, Loy C J, Randhava M, et al. Clinical efficacy and safety of 4-hexyl-1, 3-phenylenediol for improving skin hyperpigmentation[J]. Archives of Dermatological Research, 2014, 306 (5) : 455-465. |
[5] | Yen G C, Duh P D, Lin C W. Effects of resveratrol and 4-hexylresorcinol on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes[J]. Free Radical Research, 2003, 37 (5) : 509-514. |
[6] | Kim S G. 4-Hexylresorcinol: pharmacologic chaperone and its application for wound healing[J]. Maxillofacial Plastic and Reconstructive Surgery, 2022, 44 (1) : 5. |
[7] | Chen Q X, Ke L N, Song K K, et al. Inhibitory effects of hexylresorcinol and dodecylresorcinol on mushroom (Agaricus bisporus) tyrosinase[J]. The Protein Journal, 2004, 23 (2) : 135-141. |
[8] | Shariff R, Du Y, Dutta M, et al. Superior even skin tone and anti-ageing benefit of a combination of 4-hexylresorcinol and niacinamide[J]. International Journal of Cosmetic Science, 2022, 44 (1) : 103-117. |
[9] | Wu H, Gabriel T A, Bruney W A, et al. Prospective, randomized, double-blind clinical study of split-body comparison of topical hydroquinone and hexylresorcinol for skin pigment appearance[J]. Archives of Dermatological Research, 2023, 315 (5) : 1207-1214. |
[10] | Draelos Z D, Dia Z I, Cohen A, et al. A novel skin brightening topical technology[J]. Journal of Cosmetic Dermatology, 2020, 19 (12) : 3280-3285. |
[11] |
Farris P, Zeichner J, Berson D. Efficacy and tolerability of a skin brightening/anti-aging cosmeceutical containing retinol 0.5%, niacinamide, hexylresorcinol, and resveratrol[J]. Journal of Drugs in Dermatology, 2016, 15 (7) : 863-868.
pmid: 27391637 |
[12] | Yoon T J, Lei T C, Yamaguchi Y, et al. Reconstituted 3-dimensional human skin of various ethnic origins as an in vitro model for studies of pigmentation[J]. Analytical Biochemistry, 2003, 318 (2) : 260-269. |
[13] |
Netzlaff F, Lehr C, Wertz P, et al. The human epidermis models EpiSkin®, SkinEthic® and EpiDerm®: An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 60 (2) : 167-178.
pmid: 15913972 |
[14] | Klausner M, Breyfogle B, Armento A, et al. An epidermal model containing melanocytes for skin pigmentation and lightening studies[J]. Journal of Investigative Dermatology, 2020, 140 (7) : S93. |
[15] | Li X, Zhang X, Lu Y, et al. Efficacy evaluation of cosmetics (Ⅷ): The application of 3D reconstructed skin models in the evaluation of cosmetic efficacy[J]. China Surfactant Detergent & Cosmetics, 2018, 48 (9) : 489-494. |
[16] |
Yang X, Peng F, Huang J, et al. Particulate matter 2.5 induced hyperpigmentation in reconstructed human epidermis model (MelaKutis®)[J]. Chinese Medical Journal, 2022, 135 (4) : 502-504.
doi: 10.1097/CM9.0000000000001934 pmid: 35075052 |
[17] | Cui X, Mi T, Zhang H, et al. Glutathione amino acid precursors protect skin from UVB-induced damage and improve skin tone[J]. Journal of the European Academy of Dermatology and Venereology, 2024, 38(S3): 12-20. |
[18] |
Zhang C, Zhang H, Ge J, et al. Landscape dynamic network biomarker analysis reveals the tipping point of transcriptome reprogramming to prevent skin photodamage[J]. Journal of Molecular Cell Biology, 2021, 13 (11) : 822-833.
doi: 10.1093/jmcb/mjab060 pmid: 34609489 |
[19] | Cui X, Mi T, Xiao X, et al. Topical glutathione amino acid precursors protect skin against environmental and oxidative stress[J]. Journal of the European Academy of Dermatology and Venereology, 2024, 38(S3): 3-11. |
[20] | Park J Y, Park S H, Oh S W, et al. Yellow chaste weed and its components, apigenin and galangin, affect proliferation and oxidative stress in blue light-Irradiated HaCaT cells[J]. Nutrients, 2022, 14 (6) : 1217. |
[21] | Wang J, Jarrold B, Zhao W, et al. The combination of sucrose dilaurate and sucrose laurate suppresses HMGB1: an enhancer of melanocyte dendricity and melanosome transfer to keratinocytes[J]. Journal of the European Academy of Dermatology and Venereology, 2022, 36(S3): 3-11. |
[22] | Ko H J, Kim J H, Lee G S, et al. Sulforaphane controls the release of paracrine factors by keratinocytes and thus mitigates particulate matter-induced premature skin aging by suppressing melanogenesis and maintaining collagen homeostasis[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2020, 77: 153276. |
[23] | Alexandra F Hoffman, Jenn J Park, Zoe P Berman, et al. Establishing a clinically applicable methodology for skin color matching in vascularized composite allotransplantation[J]. Plastic and Reconstructive Surgery-Global Open, 2020, 8 (2) : 1-4. |
[24] |
Zhang P, Liu W, Yuan X, et al. Endothelin-1 enhances the melanogenesis via MITF-GPNMB pathway[J]. BMB Reports, 2013, 46 (7) : 364-369.
pmid: 23884103 |
[25] | Schmidt A, Miciano C, Zheng Q, et al. Involucrin modulates vitamin D receptor activity in the epidermis[J]. The Journal of Investigative Dermatology, 2023, 143 (6) : 1052-1061. |
[26] | Volksdorf T, Heilmann J, Eming S, et al. Tight junction proteins claudin-1 and occludin are important for cutaneous wound healing[J]. The American Journal of Pathology, 2017, 187 (6) : 1301-1312. |
[27] | Kim K H, Son E D, Kim H J, et al. EGR3 is a late epidermal differentiation regulator that establishes the skin-specific gene network[J]. The Journal of Investigative Dermatology, 2019, 139 (3) : 615-625. |
[28] |
Krejsa C M, Franklin C C, White C C, et al. Rapid activation of glutamate cysteine ligase following oxidative stress[J]. Journal of Biological Chemistry, 2010, 285 (21) : 16116-16124.
doi: 10.1074/jbc.M110.116210 pmid: 20332089 |
[29] | Meng Q, Chen Y, Cui L, et al. Comprehensive analysis of biological landscape of oxidative stress-related genes in diabetic erectile dysfunction[J]. International Journal of Impotence Research, 2024, 36 (6) : 627-635. |
[30] |
Luo C, Urgard E, Vooder T, et al. The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: aging and anti-aging[J]. Medical Hypotheses, 2011, 77 (2) : 174-178.
doi: 10.1016/j.mehy.2011.04.002 pmid: 21530094 |
[31] | Ge C, Cao B, Feng D, et al. The down-regulation of SLC7A11 enhances ROS induced P-gp over-expression and drug resistance in MCF-7 breast cancer cells[J]. Scientific Reports, 2017, 7 (1) : 3791. |
[32] |
Liebmann J, Born M, Kolb-Bachofen V. Blue-light irradiation regulates proliferation and differentiation in human skin cells[J]. Journal of Investigative Dermatology, 2010, 130 (1) : 259-269.
doi: 10.1038/jid.2009.194 pmid: 19675580 |
[33] |
Nakashima Y, Ohta S, Wolf A M. Blue light-induced oxidative stress in live skin[J]. Free Radical Biology and Medicine, 2017, 108: 300-310.
doi: S0891-5849(17)30134-X pmid: 28315451 |
[34] |
Campiche R, Curpen S J, Lutchmanen-Kolanthan V, et al. Pigmentation effects of blue light irradiation on skin and how to protect against them[J]. International Journal of Cosmetic Science, 2020, 42 (4) : 399-406.
doi: 10.1111/ics.12637 pmid: 32478879 |
[35] | Kamiński K, Kazimierczak U, Kolenda T. Oxidative stress in melanogenesis and melanoma development[J]. Contemp Oncol (Pozn), 2022, 26 (1) : 1-7. |
[36] | Fu W, Wu Z, Zheng R, et al. Inhibition mechanism of melanin formation based on antioxidant scavenging of reactive oxygen species[J]. Analyst, 2022, 147 (12) : 2703-2711. |
[37] | Saha S, Panigrahi D P, Patil S, et al. Autophagy in health and disease: A comprehensive review[J]. Biomedecine & Pharmacotherapie, 2018, 104: 485-495. |
[38] | Lee A Y. Skin pigmentation abnormalities and their possible relationship with skin aging[J]. International Journal of Molecular Sciences, 2021, 22 (7) : 3727. |
[39] | Lee K W, Kim M, Lee S H, et cl. The function of autophagy as a regulator of melanin homeostasis[J]. Cells, 2022, 11 (13) : 2085. |
[40] | Kovacs D, Cardinali G, Picardo M, et al. Shining light on autophagy in skin pigmentation and pigmentary disorders[J]. Cells, 2022, 11 (19) : 2999. |
[41] | Murase D, Hachiya A, Takano K, et al. Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes[J]. The Journal of Investigative Dermatology, 2013, 133 (10) : 2416-2424. |
[42] | Hwang H J, Ha H, Lee B S, et al. LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy[J]. Nature Communications, 2022, 13 (1) : 1436. |
[43] |
Pasquier B. Autophagy inhibitors[J]. Cellular and Molecular Life Sciences, 2016, 73 (5) : 985-1001.
doi: 10.1007/s00018-015-2104-y pmid: 26658914 |
[44] | Ferreira P M P, Sousa R W R, Ferreira J R O, et al. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms[J]. Pharmacological Research, 2021, 168: 105582. |
[1] | 石美玲, 陈娟博, 李皓, 黄员琴, 张启清, 曾飒, 孟涛. 二氧化硅包载对维生素C稳定性提高的研究[J]. 日用化学工业(中英文), 2024, 54(9): 1015-1022. |
[2] | 李传茂, 邱志, 王枫亮, 林盛杰, 邓慧, 李映伟. 洋甘菊总黄酮提取及其抗氧化活性研究[J]. 日用化学工业(中英文), 2024, 54(9): 1039-1049. |
[3] | 赖梓漩, 宋雨轩, 段雪伟, 刘诗芸, 刘冰, 张敏君, 杨慧文. 构树花粗多糖对紫外线诱导小鼠皮肤光损伤的保护作用及机制研究[J]. 日用化学工业(中英文), 2024, 54(9): 1069-1077. |
[4] | 孙琳, 张曼. 白花泡桐叶片提取物的抗皮肤光老化作用研究[J]. 日用化学工业(中英文), 2024, 54(9): 1092-1098. |
[5] | 钱伟,阳斌,邵博,万力,周军. 超声辅助酶法降解枳实果胶及其衍生物抗氧化性能[J]. 日用化学工业(中英文), 2024, 54(8): 947-955. |
[6] | 何美玲,范丽敏. 经皮应用水飞蓟提取物的抗衰老作用评价[J]. 日用化学工业(中英文), 2024, 54(8): 981-987. |
[7] | 刘兆亿, 陈鑫宇, 王艳, 李雪, 郭若曦, 张晗. 氧化苦参碱对小鼠皮肤屏障功能障碍的修复作用研究[J]. 日用化学工业(中英文), 2024, 54(7): 777-783. |
[8] | 邵冠儒, 张坤阳. 大黄酸通过抑制p38 MAPK磷酸化减轻UVB诱导的皮肤光老化损伤[J]. 日用化学工业(中英文), 2024, 54(7): 836-843. |
[9] | 贾雪丽, 祖姆热提·艾孜则, 毕永贤, 何聪芬, 唐萌, 董坤. 两种体外评价抗氧化活性方法影响因素分析:DPPH和ABTS[J]. 日用化学工业(中英文), 2024, 54(7): 866-872. |
[10] | 王丹, 俞舜, 王玉英, 李京玲, 刘晨阳, 吕国忠. 羟基积雪草苷通过激活Nrf2-HO-1通路发挥抗衰老及皮肤修复作用[J]. 日用化学工业(中英文), 2024, 54(6): 683-690. |
[11] | 陈来成, 陈冬杰, 邹洁, 丁红, 叶宇鹏, 杨占红. 金线莲发酵液的抗氧化和美白功效研究[J]. 日用化学工业(中英文), 2024, 54(6): 656-662. |
[12] | 高蓉, 石森林. Fe3O4纳米粒子的制备及载药释放性能研究[J]. 日用化学工业(中英文), 2024, 54(6): 677-682. |
[13] | 刘慧, 杨思佳, 任晗堃, 曲召辉, 郑立波, 李姝静. 天然植物多糖的提取、分离及其在皮肤领域的研究进展[J]. 日用化学工业(中英文), 2024, 54(6): 708-717. |
[14] | 魏楚原, 张晓萍, 潘敬, 彭佩, 张雅鹃, 穆朝峰. 4-丁基间苯二酚微乳凝胶制备及美白抗氧化研究[J]. 日用化学工业(中英文), 2024, 54(5): 520-526. |
[15] | 左雪, 邸铮, 汪亚菁, 杨玲, 张华珺, 柳青. 高效液相色谱法用于氧化型染发产品中42种限用染发剂的筛查和定量分析[J]. 日用化学工业(中英文), 2024, 54(4): 490-498. |
|