[1] |
Jeanmaire C, Danoux L, Pauly G. Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study[J]. Br. J. Dermatol., 2001, 145 (1) : 10-18.
|
[2] |
Kim C H. Expression of extracellular superoxide dismutase protein in diabetes[J]. Arch. Plast. Surg., 2013, 40 (5) : 517-521.
doi: 10.5999/aps.2013.40.5.517
pmid: 24086803
|
[3] |
Biswas D, Mandal S, Chatterjee Saha S, et al. Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review[J]. Phytother. Res., 2021, 35 (12) : 6624-6654.
|
[4] |
Park K S. Pharmacological effects of centella asiatica on skin diseases: evidence and possible mechanisms[J]. Evid. Based. Complement. Alternat. Med., 2021: 5462633.
|
[5] |
Hashim P, Sidek H, Helan M H, et al. Triterpene composition and bioactivities of Centella asiatica[J]. Molecules, 2011, 16 (2) : 1310-1322.
|
[6] |
Bandopadhyay S, Mandal S, Ghorai M, et al. Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review[J]. J. Cell Mol. Med., 2023, 27 (5) : 593-608.
|
[7] |
Haftek M, Mac-Mary S, Le Bitoux M A, et al. Clinical, biometric and structural evaluation of the long-term effects of a topical treatment with ascorbic acid and madecassoside in photoaged human skin[J]. Exp. Dermatol., 2008, 17 (11) : 946-952.
doi: 10.1111/j.1600-0625.2008.00732.x
pmid: 18503551
|
[8] |
Jung E, Lee J A, Shin S, et al. Madecassoside inhibits melanin synthesis by blocking ultraviolet-induced inflammation[J]. Molecules, 2013, 18 (12) : 15724-15736.
doi: 10.3390/molecules181215724
pmid: 24352025
|
[9] |
Chaiprasongsuk A, Panich U. Role of phytochemicals in skin photoprotection via regulation of Nrf2[J]. Front. Pharmacol., 2022, 13: 823881.
|
[10] |
Zhou J, Chen F, Yan A, et al. Madecassoside protects retinal pigment epithelial cells against hydrogen peroxide-induced oxidative stress and apoptosis through the activation of Nrf2/HO-1 pathway[J]. Biosci. Rep., 2020, 40 (10).
|
[11] |
Liu S, Li G, Tang H, et al. Madecassoside ameliorates lipopolysaccharide-induced neurotoxicity in rats by activating the Nrf2-HO-1 pathway[J]. Neurosci. Lett., 2019, 709: 134386.
|
[12] |
Lin X, Zhang S, Huang R, et al. Protective effect of madecassoside against cognitive impairment induced by D-galactose in mice[J]. Pharmacol. Biochem. Behav., 2014, 124: 434-442.
doi: 10.1016/j.pbb.2014.07.014
pmid: 25106808
|
[13] |
Li P, Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth[J]. Amino. Acids., 2018, 50 (1) : 29-38.
doi: 10.1007/s00726-017-2490-6
pmid: 28929384
|
[14] |
Hu S, He W, Wu G. Hydroxyproline in animal metabolism, nutrition, and cell signaling[J]. Amino. Acids., 2022, 54 (4) : 513-528.
|
[15] |
Bukhari S N A, Roswandi N L, Waqas M, et al. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects[J]. Int. J. Biol. Macromol., 2018, 120(Pt B): 1682-1695.
doi: S0141-8130(18)33770-X
pmid: 30287361
|
[16] |
Pittayapruek P, Meephansan J, Prapapan O, et al. Role of matrix metalloproteinases in photoaging and photocarcinogenesis[J]. Int. J. Mol. Sci., 2016, 17 (6) : 868.
|
[17] |
Hwang E, Lee D G, Park S H, et al. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type Ⅰ and MMP-1 expression[J]. J. Med. Food, 2014, 17 (9) : 985-995.
|
[18] |
Ho C C, Ng S C, Chuang H L, et al. Extracts of Jasminum sambac flowers fermented by Lactobacillus rhamnosus inhibit H2O2 -and UVB-induced aging in human dermal fibroblasts[J]. Environ. Toxicol., 2021, 36 (4) : 607-619.
|
[19] |
Lee M J, Agrahari G, Kim H Y, et al. Extracellular superoxide dismutase prevents skin aging by promoting collagen production through the activation of AMPK and Nrf2/HO-1 cascades[J]. J. Invest. Dermatol., 2021, 141 (10) : 2344-2353, 2347.
|