日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (6): 708-717.doi: 10.3969/j.issn.2097-2806.2024.06.012
刘慧1,杨思佳1,任晗堃2,曲召辉3,郑立波3,李姝静1,*()
收稿日期:
2023-06-16
修回日期:
2024-06-02
出版日期:
2024-06-22
发布日期:
2024-06-24
基金资助:
Hui Liu1,Sijia Yang1,Hankun Ren2,Zhaohui Qu3,Libo Zheng3,Shujing Li1,*()
Received:
2023-06-16
Revised:
2024-06-02
Online:
2024-06-22
Published:
2024-06-24
Contact:
* E-mail: 摘要:
植物多糖是一种从植物各部位中提取的天然高分子聚合物,由十个或十个以上的单糖单元通过糖苷键聚合而成。近年来,由于其丰富的生物活性、安全性、亲肤性等特点越来越受到人们的关注。多糖的结构和功能之间具有密切关系,不同的提取和纯化方法会对多糖的结构产生影响,进而改变其生物活性。本文阐述了植物多糖的提取、分离、纯化工艺,并同时对植物多糖具有的保湿补水、抗氧化、抗炎、抑菌、美白等功效进行了总结,以期为植物多糖在功能化妆品的开发和应用提供理论支撑。
中图分类号:
刘慧, 杨思佳, 任晗堃, 曲召辉, 郑立波, 李姝静. 天然植物多糖的提取、分离及其在皮肤领域的研究进展[J]. 日用化学工业(中英文), 2024, 54(6): 708-717.
Hui Liu, Sijia Yang, Hankun Ren, Zhaohui Qu, Libo Zheng, Shujing Li. Research progress of extraction and isolation of natural plant polysaccharides and their applications in skin care[J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 708-717.
表 2
天然来源纯化植物多糖的方法总结"
方法 | 机制 | 适用范围 | 目标生产属性 | 优点 | 缺点 |
---|---|---|---|---|---|
膜分离 | 根据膜孔径的不同分离多糖 | 不同分子量分布的粗多糖 | 获得不同分子量的多糖 | ①收率高;②不易破坏多糖的生物活性; ③能耗低 | ①易产生浓差极化现象;②膜易受到污染 |
超速离心 | 多糖沉积比不同 | 不同分子量分布的粗多糖 | 获得不同分子量的均质多糖 | 不易破坏多糖的生物活性 | 收率低 |
有机溶剂沉淀 | 多糖在不同溶剂中的溶解度不同 | 不同分子量分布的粗多糖 | 获得不同分子量的多糖 | ①工艺简单;②可以获得不同分子量分布的多糖 | ①易产生共沉淀;②效率低 |
季铵盐沉淀 | 长链季铵盐可与酸性多糖或长链多糖形成络合物而沉淀 | 大多数粗多糖,尤其是酸性多糖 | 获得酸性和中性的粗多糖 | ①成本低;②设备要求简单 | ①多糖结构破坏大; ②收率低 |
阴离子交换 层析 | 依据流动相中组分离子与交换剂上的平衡离子进行可逆交换时结合力大小差异分离 | 酸性、中性和粘性多糖,尤其是与蛋白质结合的复杂多糖 | 获得均质多糖 | 分离能力大,效果 满意 | ①成本高;②洗脱液流速易受体积变化影响,对洗脱液pH值或溶液离子强度的变化敏感 |
凝胶柱层析 | 分子筛原理,根据多糖的大小和形状 | 大多数粗多糖 | 获得不同分子量范围的均质多糖 | 快速、方便、有效的分离过程 | ①分离条件严格;②不适用于粘多糖的分离 |
亲和柱层析 | 分子亲和力 | 对色谱柱上的基团有亲和力的多糖 | 获得具有不同性质的均质多糖 | ①可分离含量较少的多糖;②多糖的一次性富集度很高 | 很难找到合适的配体 |
纤维素柱层析 | 分子筛原理 | 酸性和中性多糖 | 获得不同分子量范围的多糖 | 高纯度多糖 | 费时,特别是对于更粘稠的酸性多糖 |
大孔树脂层析 | 分子筛与选择性吸附原理 | 大多数多糖 | 获得不同分子量范围的多糖 | ①吸附容量高;②选择性好;③重现性好 | 分离不同性质多糖的能力较弱 |
[1] | Ren Y, Bai Y P, Zhang Z D, et al. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: A review of recent development[J]. Molecules, 2019, 24 (17) : 3122. |
[2] |
Yu Y, Shen M Y, Song Q Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review[J]. Carbohydrate Polymers, 2018, 183: 91-101.
doi: S0144-8617(17)31406-6 pmid: 29352896 |
[3] | Guru P R, Kar R K, Nayak A K, et al. A comprehensive review on pharmaceutical uses of plant-derived biopolysaccharides[J]. International Journal of Biological Macromolecules, 2023: 123454. |
[4] | Zhou S Y, Rahman A, Li J H, et al. Extraction methods affect the structure of Goji (Lycium barbarum) polysaccharides[J]. Molecules, 2020, 25 (4): 936. |
[5] | Liu Y, Guo Q W, Zhang S M, et al. Polysaccharides from discarded stems of trollius chinensis bunge elicit promising potential in cosmetic industry: characterization, moisture retention and antioxidant activity[J]. Molecules, 2023, 28 (7) : 3114. |
[6] | Mu S, Yang W J, Huang G L. Antioxidant activities and mechanisms of polysaccharides[J]. Chemical Biology & Drug Design, 2021, 97 (3) : 628-632. |
[7] |
Alkahtani J, Elshikh M S, Almaary K S, et al. Anti-bacterial, anti-scavenging and cytotoxic activity of garden cress polysaccharides[J]. Saudi Journal of Biological Sciences, 2020, 27 (11) : 2929-2935.
doi: 10.1016/j.sjbs.2020.08.014 pmid: 33100848 |
[8] |
Cui C, Chen S, Wang X Y, et al. Characterization of Moringa oleifera roots polysaccharide MRP-1 with anti-inflammatory effect[J]. International Journal of Biological Macromolecules, 2019, 132: 844-851.
doi: S0141-8130(18)37268-4 pmid: 30936009 |
[9] | Choi J U, Nam J H, Rod-In W, et al. Korean ginseng berry polysaccharide enhances immunomodulation activities of peritoneal macrophages in mice with cyclophosphamide-induced immunosuppression[J]. Journal of Microbiology and Biotechnology, 2023, 33 (6) : 1-8. |
[10] |
Souza R O S, Assreuy A M S, Madeira J C, et al. Purified polysaccharides of geoffroea spinosa barks have anticoagulant and antithrombotic activities devoid of hemorrhagic risks[J]. Carbohydrate Polymers, 2015, 124: 208-215.
doi: 10.1016/j.carbpol.2015.01.069 pmid: 25839813 |
[11] | Huang G L, Chen F, Yang W J, et al. Preparation, deproteinization and comparison of bioactive polysaccharides[J]. Trends in Food Science & Technology, 2021, 109: 564-568. |
[12] | Guo H, Yuan Q, Fu Y, et al. Extraction optimization and effects of extraction methods on the chemical structures and antioxidant activities of polysaccharides from snow chrysanthemum (Coreopsis Tinctoria)[J]. Polymers, 2019, 11 (2) : 215. |
[13] | Mei X Y, Tang Q L, Huang G L, et al. Preparation, structural analysis and antioxidant activities of phosphorylated (1→3)-β-D-glucan[J]. Food Chemistry, 2019, 309: 125791. |
[14] | Song Y R, Sung S K, Jang M, et al. Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer)[J]. International Journal of Biological Macromolecules, 2018, 116: 1089-1097. |
[15] |
Chen G J, Fang C C, Ran C X, et al. Comparison of different extraction methods for polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products[J]. International Journal of Biological Macromolecules, 2019, 130: 903-914.
doi: S0141-8130(18)35131-6 pmid: 30849468 |
[16] | Ahmadi S, Mainali R, Nagpal R, et al. Dietary polysaccharides in the amelioration of gut microbiome dysbiosis and metabolic diseases[J]. Obesity & Control Therapies: Open Access, 2017, 4 (3). |
[17] | Zou X L, Liu Y X, Tao C, et al. CO2 supercritical fluid extraction and characterization of polysaccharide from bamboo (Phyllostachys heterocycla) leaves[J]. Journal of Food Measurement and Characterization, 2018, 12: 35-44. |
[18] |
Chen X, Zhang H B, Du W Q, et al. Comparison of different extraction methods for polysaccharides from crataegus pinnatifida bunge[J]. International Journal of Biological Macromolecules, 2020, 150: 1011-1019.
doi: S0141-8130(19)37875-4 pmid: 31712144 |
[19] | Wu H Y, Shang H M, Guo Y, et al. Comparison of different extraction methods of polysaccharides from cup plant (Silphium perfoliatum L.)[J]. Process Biochemistry, 2020, 90: 241-248. |
[20] |
Zhang W J, Huang J, Wang W, et al. Extraction, purification, characterization and antioxidant activities of polysaccharides from cistanche tubulosa[J]. International Journal of Biological Macromolecules, 2016, 93: 448-458.
doi: S0141-8130(16)30838-8 pmid: 27593241 |
[21] | Li J C, Huang G L. Extraction, purification, separation, structure, derivatization and activities of polysaccharide from Chinese date[J]. Process Biochemistry, 2021, 110: 231-242. |
[22] | Albuquerque P B S, de Oliveira W F, dos Santos S P M, et al. Skincare application of medicinal plant polysaccharides—A review[J]. Carbohydrate Polymers, 2022, 277: 118824. |
[23] | Yan Maoqiang, Liu Li, Lu Chengzhi. Water content of the stratum corneum and its effect on the biological function of the skin[J]. Journal of Clinical Dermatology, 2008, 37 (12) : 816-818. |
[24] |
Vijayendra S V N, Shamala T R. Film forming microbial biopolymers for commercial applications—A review[J]. Critical Reviews in Biotechnology, 2014, 34 (4) : 338-357.
doi: 10.3109/07388551.2013.798254 pmid: 23919238 |
[25] | Sebti I, Coma V. Active edible polysaccharide coating and interactions between solution coating compounds[J]. Carbohydrate Polymers, 2002, 49 (2) : 139-144. |
[26] |
Li J X, Chi Z, Yu L J, et al. Sulfated modification, characterization, and antioxidant and moisture absorption/retention activities of a soluble neutral polysaccharide from enteromorpha prolifera[J]. International Journal of Biological Macromolecules, 2017, 105: 1544-1553.
doi: S0141-8130(16)31932-8 pmid: 28363657 |
[27] | Chen M, Sun Y, Zhao Y. Study on the moisturizing effect of dendrobium officinale[J]. Acta Universitatis Traditionis Medicalis Sinensis Pharmacologiaeque Shanghai, 2015 (29) : 70-73. |
[28] | Zhang Z S, Wang X M, Han Z P, et al. Purification, antioxidant and moisture-preserving activities of polysaccharides from papaya[J]. Carbohydrate Polymers, 2012, 87 (3) : 2332-2337. |
[29] | Chen Zheng, Gao Youjun, Deng Fangfei, et al. Microwave extraction of polysaccharides from Osmanthus fragrans leaves and their moisture absorption and moisturizing properties and antioxidant properties[J]. New Chemical Materials, 2022, 50 (S1) : 337-340. |
[30] | Chanpirom S, Saewan N, Sripisut T. Alternative utilization of vegetable crop: pumpkin polysaccharide extract and their efficacy on skin hydration[J]. Cosmetics, 2022, 9 (6) : 113. |
[31] | Zou Pengfei, Liu Zhihe, Lu Wancheng, et al. Skin’s own moisturizing system and the design of moisturizing skin care products[J]. Science of Daily Chemicals, 2012, 35 (1) : 18-20. |
[32] | Liu L Y, Chen X D, Wu B Y, et al. Influence of aloe polysaccharide on proliferation and hyaluronic acid and hydroxyproline secretion of human fibroblasts in vitro[J]. Journal of Chinese Integrative Medicine, 2010, 8 (3) : 256-262. |
[33] |
Huang G L, Mei X Y, Hu J C. The antioxidant activities of natural polysaccharides[J]. Current Drug Targets, 2017, 18 (11) : 1296-1300.
doi: 10.2174/1389450118666170123145357 pmid: 28117001 |
[34] | Shi X, Cheng W, Wang Q, et al. Exploring the protective and reparative mechanisms of G. lucidum polysaccharides against H2O2-induced oxidative stress in human skin fibroblasts[J]. Clinical, Cosmetic and Investigational Dermatology, 2021: 1481-1496. |
[35] | Byun E B, Song H Y, Kim W S. Polysaccharides from annona muricata leaves protect normal human epidermal keratinocytes and mice skin from radiation-induced injuries[J]. Radiation Physics and Chemistry, 2020, 170: 108672. |
[36] |
Mei X Y, Yang W J, Huang G L, et al. The antioxidant activities of balsam pear polysaccharide[J]. International Journal of Biological Macromolecules, 2020, 142: 232-236.
doi: S0141-8130(19)37208-3 pmid: 31669276 |
[37] |
Chen S H, Huang H L, Huang G L. Extraction, derivatization and antioxidant activity of cucumber polysaccharide[J]. International Journal of Biological Macromolecules, 2019, 140: 1047-1053.
doi: S0141-8130(19)36384-6 pmid: 31454644 |
[38] | Zhou S Y, Huang G L, Huang H H. Extraction, derivatization and antioxidant activities of onion polysaccharide[J]. Food Chemistry, 2022, 388: 133000. |
[39] | Liu Ting, Liu Fang, Chen Liang, et al. Evaluation on the anti-acne and anti-inflammatory effects of chinese herbal composite cosmetics[J]. China Surfactant Detergent & Cosmetics, 2020, 50 (8) : 553-559. |
[40] | Biswas S K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?[J]. Oxidative Medicine and Cellular Longevity, 2016. |
[41] |
Wang B Y, Tai M L, Zhang K, et al. Elaeagnus L gum polysaccharides alleviate the impairment of barrier function in the dry skin model mice[J]. Journal of Cosmetic Dermatology, 2021, 20 (2) : 647-656.
doi: 10.1111/jocd.13541 pmid: 33098181 |
[42] | Wang L S, Yang K Y, Jing R R, et al. Protective effect of saussurea involucrata polysaccharide against skin dryness induced by ultraviolet radiation[J]. Frontiers in Pharmacology, 2023, 14: 1089537. |
[43] | Yang Yuhang, Yang Ziqing, Xu Haixu, et al. Pomegranate leaf polysaccharide extraction process optimization and in vitro activity analysis[J]. Journal of Feed Research, 2023, 46 (10) : 90-95. |
[44] | Di Domenico E G, Farulla I, Prignano G, et al. Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype[J]. International Journal of Molecular Sciences, 2017, 18 (5) : 1077. |
[45] | Berger P A, Ford A B, Brown-Joel Z, et al. Angioinvasive fungal infections impacting the skin[J]. Journal of the American Academy of Dermatology, 2019, 80 (4). |
[46] | Zhou Y, Chen X X, Chen T T, et al. A review of the antibacterial activity and mechanisms of plant polysaccharides[J]. Trends in Food Science & Technology, 2022, 123: 264-280. |
[47] | Ghazala I, Sila A, Frikha F, et al. Antioxidant and antimicrobial properties of water soluble polysaccharide extracted from carrot peels by-products[J]. Journal of Food Science and Technology, 2015, 52: 6953-6965. |
[48] |
Hammami N, Gara A B, Bargougui K, et al. Improved in vitro antioxidant and antimicrobial capacities of polysaccharides isolated from salicornia arabica[J]. International Journal of Biological Macromolecules, 2018, 120: 2123-2130.
doi: S0141-8130(18)33566-9 pmid: 30217647 |
[49] |
Xiao Z Q, Zhang Q, Dai J, et al. Structural characterization, antioxidant and antimicrobial activity of water-soluble polysaccharides from bamboo (Phyllostachys pubescens Mazel) leaves[J]. International Journal of Biological Macromolecules, 2020, 142: 432-442.
doi: S0141-8130(19)34968-2 pmid: 31593720 |
[50] | Lan Y, Zeng W, Dong X, et al. Opsin 5 is a key regulator of ultraviolet radiation‐induced melanogenesis in human epidermal melanocytes[J]. British Journal of Dermatology, 2021, 185 (2) : 391-404. |
[51] |
Lei T C, Virador V M, Vieira W D, et al. A melanocyte-keratinocyte coculture model to assess regulators of pigmentation in vitro[J]. Analytical Biochemistry, 2002, 305 (2) : 260-268.
pmid: 12054455 |
[52] |
Videira I F S, Moura D F L, Magina S. Mechanisms regulating melanogenesis[J]. Anais Brasileiros De Dermatologia, 2013, 88: 76-83.
doi: S0365-05962013000100076 pmid: 23539007 |
[53] | Huang H C, Lin H, Huang M C. The lactoferricin B-derived peptide, LfB17-34, induces melanogenesis in B16F10 cells[J]. International Journal of Molecular Medicine, 2017, 39 (3) : 595-602. |
[54] | Hearing V J. Determination of melanin synthetic pathways[J]. The Journal of Investigative Dermatology, 2011, 131(E1): 8-11. |
[55] |
Yang B, Zhao M, Jiang Y. Optimization of tyrosinase inhibition activity of ultrasonic-extracted polysaccharides from longan fruit pericarp[J]. Food Chemistry, 2008, 110 (2) : 294-300.
doi: 10.1016/j.foodchem.2008.01.067 pmid: 26049219 |
[56] | Hu S H, Huang J H, Pei S Y, et al. Ganoderma lucidum polysaccharide inhibits UVB‐induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways[J]. Journal of Cellular Physiology, 2019, 234 (5) : 7330-7340. |
[57] | Fu W Y, Liao X H, Zhang Q, et al. Anti-melanogenesis effect from Wampee fruit pectin via α-MSH/TRY pathway in A375 cells[J]. BMC Complementary Medicine and Therapies, 2022, 22 (1) : 1-13. |
[58] | Tao X, Hu X, Wu T, et al. Characterization and screening of anti-melanogenesis and anti-photoaging activity of different enzyme-assisted polysaccharide extracts from Portulaca oleracea L[J]. Phytomedicine, 2023, 116: 154879. |
[59] |
Rout S, Banerjee R. Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum[J]. Bioresource Technology, 2007, 98 (16) : 3159-3163.
pmid: 17140791 |
[1] | 王丹, 俞舜, 王玉英, 李京玲, 刘晨阳, 吕国忠. 羟基积雪草苷通过激活Nrf2-HO-1通路发挥抗衰老及皮肤修复作用[J]. 日用化学工业(中英文), 2024, 54(6): 683-690. |
[2] | 陈海峰, 杨小玉, 余昊阳, 刘蕾, 李润夏, 何聪芬. 麝香草酚三甲氧基肉桂酸酯抑制黑色素生成、转移及AGEs合成的功效研究[J]. 日用化学工业(中英文), 2024, 54(6): 691-697. |
[3] | 陈来成, 陈冬杰, 邹洁, 丁红, 叶宇鹏, 杨占红. 金线莲发酵液的抗氧化和美白功效研究[J]. 日用化学工业(中英文), 2024, 54(6): 656-662. |
[4] | 张明轩, 许佩佩, 随东辉. 一种长效抑菌洗衣液的配方设计与性能研究[J]. 日用化学工业(中英文), 2024, 54(6): 663-668. |
[5] | 王紫迪,周城,何华名,焦倩,苏芊芊,贾焱. 洗发水表面活性剂对头皮的影响及其内在机制的研究进展[J]. 日用化学工业(中英文), 2024, 54(6): 733-743. |
[6] | 魏楚原, 张晓萍, 潘敬, 彭佩, 张雅鹃, 穆朝峰. 4-丁基间苯二酚微乳凝胶制备及美白抗氧化研究[J]. 日用化学工业(中英文), 2024, 54(5): 520-526. |
[7] | 崔俭杰, 蔡安瑞, 赵祎玮. DPK法对离子导入技术促进护肤用活性成分在皮肤的吸收过程研究[J]. 日用化学工业(中英文), 2024, 54(5): 535-541. |
[8] | 张嘉琪, 吴凡, 韩雨晴, 刘琦, 王俊杰, 盘瑶. 多光子成像技术及其在化妆品评估中的应用[J]. 日用化学工业(中英文), 2024, 54(5): 605-613. |
[9] | 韩耕涛, 董卓, 姚韧辉. 芝麻林素对皮肤光老化小鼠AQP3表达和Nrf2信号通路活化的影响[J]. 日用化学工业(中英文), 2024, 54(4): 431-438. |
[10] | 陶薇, 李翔. 高效液相色谱法同时测定化妆品中24种美白成分[J]. 日用化学工业(中英文), 2024, 54(4): 484-489. |
[11] | 李健, 邓建明, 黄源城, 余敏, 王光丽, 王靖. 黑茶籽油成分分析及其对于H2O2诱导HFF-1细胞氧化损伤的保护作用[J]. 日用化学工业(中英文), 2024, 54(4): 393-400. |
[12] | 何一凡, 吴文海, 苏牧楠, 蒋晓龙, 刘宇红. 拉曼光谱研究表面活性剂对皮肤刺激和皮肤防护的体内分子机制[J]. 日用化学工业(中英文), 2024, 54(4): 401-409. |
[13] | 胡翠翠, 周代红, 陈欣菀, 钟佳伶, 茆灿泉. 中药复方MHC-20的抗化脓性链球菌功效与作用机制探究[J]. 日用化学工业(中英文), 2024, 54(3): 282-289. |
[14] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[15] | 张红菱, 程琳, 王海燕, 罗飞亚, 张会亮, 孙磊. 应用DPRA替代方法评价3种香豆素类化合物的皮肤致敏性[J]. 日用化学工业(中英文), 2024, 54(2): 156-160. |
|