[1] |
Giovannacci I, Meleti M, Garbarino F, et al. Correlation between autofluorescence intensity and histopathological features in non-melanoma skin cancer: An ex vivo study[J]. Cancers, 2021, 13 (16) : 3974.
|
[2] |
Borile G, Sandrin D, Filippi A, et al. Label-free multiphoton microscopy: Much more than fancy images[J]. International Journal of Molecular Sciences, 2021, 22 (5) : 2657.
|
[3] |
Shi Yujie, Zhang Guangjie, Lu Zhengyuan, et al. Advances in multiphoton microscopy technologies[J]. Chinese Optics, 2018, 3 (11) : 296-307.
|
[4] |
Göppert-Mayer M. Über Elementarakte mit zwei Quantensprüngen[J]. Annalen der Physik, 1931, 9: 273-294.
|
[5] |
Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248: 73-76.
doi: 10.1126/science.2321027
pmid: 2321027
|
[6] |
Masters B R, So P T, Gratton E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin[J]. Biophysical Journal, 1997, 72 (6) : 2405-2412.
pmid: 9168018
|
[7] |
Li Shaoqiang, Geng Junxian, Li Yanping, et al. New advances in biomedical applications of multiphoton imaging technology[J]. About Acta Physica Sinica, 2020, 22 (69).
|
[8] |
Stachowiak D, Boguslawsk J, Gluszek A, et al. Frequency-doubled femtosecond Er-doped fiber laser for two-photon excited fluorescence imaging[J]. Biomedical Optics Express, 2020, 11 (8) : 4431.
doi: 10.1364/BOE.396878
pmid: 32923054
|
[9] |
Ke W, Horton N G, Charan K, et al. Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20 (2).
|
[10] |
Parodi V, Jacchetti E, Osellame R, et al. Nonlinear optical microscopy: From fundamentals to applications in live bioimaging[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8 (9).
|
[11] |
Chi H H, Lee J C, Chen C C, et al. An index combining lost and remaining nerve fibers correlates with pain hypersensitivity in mice[J]. Cells, 2020, 9 (11) : 2414.
|
[12] |
Stutzmann G E, Parker I. Dynamic multiphoton imaging: A live view from cells to systems[J]. Physiology (Bethesda, Md.), 2005, 20: 15-21.
|
[13] |
Seidenari S, Arginelli F, Bassoli S, et al. Multiphoton laser microscopy and fluorescence lifetime imaging for the evaluation of the skin[J]. Dermatology Research and Practice, 2012.
|
[14] |
Liang Xiaoxuan, Vogel Alfred, Zhang Zhenxi. Photodamage of biotissue in multiphoton imaging[J]. Chinese Journal of Lasers, 2023, 50 (3).
|
[15] |
Dong Yinmao, Meng Hong, Ma Laiji. Skin epigenetic physiology[M]. Beijing: Chemical Industry Press, 2018.
|
[16] |
Liu Chao, Jiang Zhao, Wang Xin, et al. Continuous optical zoom microscope with extended depth of field and 3D reconstruction[J]. PhotoniX, 2022, 3 (1) : 1-18.
|
[17] |
Li Chengtong, Zhao Hua, Wang Min. Efficacy evaluation of cosmetics (Ⅸ): Application of image analysis method in the evaluation of cosmetic efficacy[J]. China Surfactant Detergent & Cosmetics, 2018, 10 (48) : 551-557.
|
[18] |
Pham D L, Miller C R, Myers M S, et al. Development and characterization of phasor-based analysis for FLIM to evaluate the metabolic and epigenetic impact of HER2 inhibition on squamous cell carcinoma cultures[J]. Journal of Biomedical Optics, 2021, 26 (10).
|
[19] |
Lin S J, Wu R J, Tan H Y, et al. Evaluating cutaneous photoaging by use of multiphoton fluorescence and secondharmonic generation microscopy[J]. Optics Letters, 2005, 30 (17) : 2275-2277.
|
[20] |
Koehler M J, König K, Elsner P, et al. In vivo assessment of human skin aging by multiphoton laser scanning tomography[J]. Optics Letters, 2006, 31 (19) : 2879.
pmid: 16969409
|
[21] |
Puschmann S, Rahn C D, Wenck H, et al. Approach to quantify human dermal skin aging using multiphoton laser scanning microscopy[J]. Journal of Biomedical Optics, 2012, 17 (3).
|
[22] |
Ung T P L, Lim S, Solinas X, et al. Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA-induced metabolic stress in reconstructed human skin[J]. Scientific Reports, 2021, 11 (1).
|
[23] |
Li Shaoqiang, Geng Junxian, Li Yanping, et al. New advances in biomedical applications of multiphoton imaging technology[J]. About Acta Physica Sinica, 2020, 22 (69).
|
[24] |
Ying Yachen, Zhang Guangjie, Jia Huilin, et al. Multi-photon skin tissue imaging technology and its applications[J]. Chinese Optic, 2019, 1 (12) : 104-111.
|
[25] |
Sanchez W Y, Obispo C, Ryan E, et al. Changes in the redox state and endogenous fluorescence of in vivo human skin due to intrinsic and photo-aging, measured by multiphoton tomography with fluorescence lifetime imaging[J]. Journal of Biomedical Optics, 2013, 18 (6).
|
[26] |
Koehler M J, Hahn S, Preller A, et al. Morphological skin ageing criteria by multiphoton laser scanning tomography: Non-invasive in vivo scoring of the dermal fibre network[J]. Experimental Dermatology, 2008, 17 (6) : 519-523.
doi: 10.1111/j.1600-0625.2007.00669.x
pmid: 18201192
|
[27] |
Matts P J, Dykes P J, Mark S R. The distribution of melanin in skin determined in vivo[J]. British Journal of Dermatology, 2007, 156 (4) : 620-628.
pmid: 17493065
|
[28] |
Nielsenk P, Zhao L, Stamnes J J, et al. The importance of the depth distribution of melanin in skin for DNA protection and other photobiologicalprocesses[J]. Journal of Photochemistry and Photobiology B: Biology, 2006, 82 (3) : 194-198.
|
[29] |
Dancik Y, Favre A, Loyc J, et al. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo[J]. Biomedical Optics Express, 2013, 18 (2).
|
[30] |
Su Ning, Liu Hongmei, Hu Nan, et al. In vivo exploring study of melanin content and distribution in human skin based on multiphoton tomography[J]. Flavour Fragrance Cosmetics, 2020, 1 (2) : 71-74.
|
[31] |
Pena A M, Decenciere E, Brizion S, et al. In vivo melanin 3D quantification and z-epidermal distribution by multiphoton FLIM, phasor and Pseudo-FLIM analyses[J]. Scientific Reports, 2022, 12 (1) : 1642.
|
[32] |
Song Yanqing, Pan Yao, Zhao Hua. An overview of skin penetration test methods for cosmetics[J]. China Surfactant Detergent & Cosmetics, 2019, 12 (49) : 824-838.
|
[33] |
Sun Yanan, Li Lishuang, Ma Shuhua, et al. In vivo visualization of collagen transdermal absorption by second-harmonic generation and two-photon excited fluorescence microscopy[J]. Frontiers in Chemistry, 2022, 10.
|
[34] |
Sun Yanan, Zhao Jing, Li Chaohua, et al. Application of second harmonic generation and two-photon fluorescence in the distribution tracing of fluorescence labelled collagen[J]. Acta Laser Biology Sinica, 2017, 26 (1) : 24-29.
|
[35] |
Pflucker F, Wendel V, Hohenberg H, et al. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide[J]. Skin Pharmacology and Applied Skin Physiology, 2001, 14: 92-97.
|
[36] |
Roberts M S, Roberts M J, Robertson T A, et al. In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver[J]. Journal of Biophotonics, 2008, 1 (6) : 478-493.
doi: 10.1002/jbio.200810058
pmid: 19343674
|
[37] |
Wang Shaowei, Lei Ming. Near infrared-Ⅱ excited multiphoton fluorescence imaging[J]. Laser & Optoelectronics Progress, 2022, 59 (6).
|
[38] |
Liu Zhaorui, Liu Jie. Applications of skin imaging techniques in cosmetic dermatology[J]. Dermatology Bulletin, 2018, 2 (35) : 202-209.
|
[39] |
Kucikas V, Werner M P, Schmitz-Rode T, et al. Two-photon endoscopy: State of the art and perspectives[J]. Molecular Imaging and Biology, 2021, 25 (1) : 3-17.
doi: 10.1007/s11307-021-01665-2
pmid: 34779969
|