日用化学工业 ›› 2019, Vol. 49 ›› Issue (12): 824-829.doi: 10.3969/j.issn.1001-1803.2019.12.010
收稿日期:
2019-03-26
修回日期:
2019-11-25
出版日期:
2019-12-22
发布日期:
2019-12-24
通讯作者:
盘瑶
作者简介:
宋艳青(1995-),女,山东人,硕士研究生,电话:13146917887,E-mail:songyq1108@foxmail.com。
基金资助:
SONG Yan-qing1,2,PAN Yao1,2(),ZHAO Hua1,2
Received:
2019-03-26
Revised:
2019-11-25
Online:
2019-12-22
Published:
2019-12-24
Contact:
Yao PAN
摘要:
概述了化妆品透皮吸收的途径和理论,介绍了扩散池法、胶带粘贴技术和光谱方法等体外和体内的透皮吸收的评价方法,提供了评价化妆品透皮吸收能力的新思路,展望了化妆品透皮吸收评价方法的发展趋势。
中图分类号:
宋艳青,盘瑶,赵华. 化妆品透皮吸收试验方法概述[J]. 日用化学工业, 2019, 49(12): 824-829.
SONG Yan-qing,PAN Yao,ZHAO Hua. An overview of skin penetration test methods for cosmetics[J]. China Surfactant Detergent & Cosmetics, 2019, 49(12): 824-829.
表 1
三种光谱方法的比较[30,34,43-45]"
ATR-FT-IR | CRM | FLIM | |
---|---|---|---|
光谱范围 | 400~4 000 cm-1 | 40~4 000 cm-1 | 激发波长:700~850 nm 发射波长:350~620 nm |
结构特征 | 具有红外光吸收特性 | 具有拉曼光谱特征 | 具有荧光基团 |
皮肤检测深度 | 角质层 | 表皮层(<100 μm) | 表皮层和部分真皮层(<250 μm) |
优点 | 制样简单、扫描速度快、灵敏度高、分辨率高、实时原位跟踪、时间短、光谱范围广、操作简单、无红外聚焦热效应影响 | 制样简单、时间短、无创、可在体检测、分辨率最高、可检测水溶液待测物 | 无创、可在体检测、特异性强、灵敏度高、可定量、不受光强度影响 |
缺点 | 定量分析不够好、间接分析技术、依赖于标准方法数据库 | 受荧光背景干扰、受激发强度过高影响、检测灵敏度低 | 分辨率与成像速度相互制约 |
在化妆品透皮吸收检测中的应用 | 促渗剂(乙醇、丙二醇、DMSO、脂肪酸)、表面活性剂(蔗糖月桂酸酯、卵磷脂、烷基糖苷)、纳米防晒剂 | 维生素A、促渗剂(DMSO、丙二醇、氮酮)、咖啡因、化学防晒剂(甲氧基肉桂酸乙基己酯、水杨酸乙基己酯、二苯酮-3、二甲基PABA乙基己酯、苯基苯并咪唑磺酸)、油脂(霍霍巴油、石蜡油、甜杏仁油) | 纳米防晒剂(ZnO)、化学防晒剂(水杨酸乙基己酯、二甲基PABA乙基己酯、甲氧基肉桂酸乙基己酯)、荧光标记脂质体 |
[1] | Lin J, He C F, Dong Y M . Transdermal absorption pathway and technique of cosmetic efficacy components[J]. China Cosmetics Review, 2009 ( 1) : 90-97. |
[2] |
Guo Q, Lin H F, Gao S , et al. Cosmetic dermal delivery of functional ingredients and its research[J]. Flavour Fragrance Cosmetic, 2002 ( 1) : 32-34.
doi: 10.1007/s00403-016-1645-8 pmid: 27086034 |
[3] | Dong Y M, Meng H, Ma L J. Skin epigenetic physiology[M]. Beijing: Chemical Industry Press, 2018. |
[4] |
Barry B W . Novel mechanisms and devices to enable successful transdermal drug delivery[J]. Eur J Pharm Sci, 2001,14(2) : 101-114.
doi: 10.1016/s0928-0987(01)00167-1 pmid: 11500256 |
[5] |
Lin J, He C F, Dong Y M . Transdemal absorption mechanism of functional compents in cosmetic[J]. China Surfactant Detergent & Cosmetic, 2009,39(4) : 275-278.
doi: 10.1016/j.chemosphere.2019.125559 pmid: 31841794 |
[6] |
Bartosova L, Bajgar J . Transdermal drug delivery in vitro using diffusion cells[J]. Curr Med Chem, 2012,19(27) : 4671-4677.
doi: 10.2174/092986712803306358 pmid: 22934776 |
[7] |
Van Gele M, Geusens B, Brochez L , et al. Three-dimensional skin models as tools for transdermal drug delivery: challenges and limitations[J]. Expert Opin Drug Deliv, 2011,8(6) : 705-720.
doi: 10.1517/17425247.2011.568937 pmid: 21446890 |
[8] |
Jung E C, Maibach H I . Animal models for percutaneous absorption[J]. J Appl Toxicol, 2015,35(1) : 1-10.
doi: 10.1002/jat.3004 pmid: 25345378 |
[9] |
Simon G A, Maibach H I . The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations: an overview[J]. Skin Pharmacol Appl Skin Physiol, 2000,13(5) : 229-234.
doi: 10.1159/000029928 pmid: 10940812 |
[10] |
Debeer S, Le Luduec J B, Kaiserlian D , et al. Comparative histology and immunohistochemistry of porcine versus human skin[J]. Eur J Dermatol, 2013,23(4) : 456-466.
doi: 10.1684/ejd.2013.2060 |
[11] | Huang X P, Wan X X, Wang Z B , et al. Comparison on pig skins of different position with human skin in skin permeability of drugs[J]. Chin J Hosp Pharm, 1997 ( 7) : 309-310. |
[12] |
Ponec M, Boelsma E, Gibbs S , et al. Characterization of reconstructed skin models[J]. Skin Pharmacol Physiol, 2002,15(S1) : 4-17.
doi: 10.1038/s41598-019-44204-4 pmid: 31127151 |
[13] |
Schafer-Korting M, Bock U, Diembeck W , et al. The use of reconstructed human epidermis for skin absorption testing: Results of the validation study[J]. Altern Lab Anim, 2008,36(2) : 161-187.
doi: 10.1177/026119290803600207 pmid: 18522484 |
[14] |
Holmgaard R, Benfeldt E, Nielsen J B . Percutaneous penetration: methodological considerations[J]. Basic Clin Pharmacol Toxicol, 2014,115(1) : 101-109.
doi: 10.1111/bcpt.12188 pmid: 24373389 |
[15] | OECD. Skin absorption: In vitro method. OECD guidelines for the testing of chemicals No.428[S]. Paris: 2004. |
[16] |
Liang K, Xu K, Bessarab D , et al. Arbutin encapsulated micelles improved transdermal delivery and suppression of cellular melanin production[J]. BMC Res Notes, 2016 ( 9) : 254.
doi: 10.1186/s13104-016-2047-x pmid: 27129306 |
[17] |
Chien Y W, Valia K H . Development of a dynamic skin permeation system for long-term permeation studies[J]. Drug Dev Ind Pharm, 1984,10(4) : 575-599.
doi: 10.3109/03639048409041408 |
[18] |
Chen Z X, Li B, Liu T , et al. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers[J]. Eur J Pharm Sci, 2017,99:240-245.
doi: 10.1016/j.ejps.2016.12.026 pmid: 28039091 |
[19] |
Van Ravenzwaay B, Leibold E . A comparison between in vitro rat and human and in vivo rat skin absorption studies[J]. Hum Exp Toxicol, 2004,23(9) : 421-430.
doi: 10.1191/0960327104ht471oa pmid: 15497817 |
[20] |
Kezic S . Methods for measuring in-vivo percutaneous absorption in humans[J]. Hum Exp Toxicol, 2008,27(4) : 289-295.
doi: 10.1177/0960327107085825 pmid: 18684799 |
[21] |
Jakasa I, Verberk M M, Bunge A L , et al. Increased permeability for polyethylene glycols through skin compromised by sodium lauryl sulphate[J]. Exp Dermatol, 2006,15(10) : 801-807.
doi: 10.1111/j.1600-0625.2006.00478.x pmid: 16984262 |
[22] |
Jakasa I, Verberk M M, Esposito M , et al. Altered penetration of polyethylene glycols into uninvolved skin of atopic dermatitis patients[J]. J Invest Dermatol, 2007,127(1) : 129-134.
doi: 10.1038/sj.jid.5700582 pmid: 17039242 |
[23] |
Reddy M B, Stinchcomb A L, Guy R H , et al. Determining dermal absorption parameters in vivo from tape strip data[J]. Pharm Res, 2002,19(3) : 292-298.
doi: 10.1023/a:1014443001802 pmid: 11934236 |
[24] |
Pirot F, Kalia Y N, Stinchcomb A L , et al. Characterization of the permeability barrier of human skin in vivo[J]. Proc Natl Acad Sci U S A, 1997,94(4) : 1562-1567.
doi: 10.1073/pnas.94.4.1562 pmid: 9037093 |
[25] |
Bashir S J, Chew A L, Anigbogu A , et al. Physical and physiological effects of stratum corneum tape stripping[J]. Skin Res Technol, 2001,7(1) : 40-48.
doi: 10.1034/j.1600-0846.2001.007001040.x pmid: 11301640 |
[26] |
Wissing S A, Muller R H . Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration[J]. J Control Release, 2002,81(3) : 225-233.
doi: 10.1016/s0168-3659(02)00056-1 pmid: 12044563 |
[27] |
Alvarez-Roman R, Naik A, Kalia Y N , et al. Visualization of skin penetration using confocal laser scanning microscopy[J]. Eur J Pharm Biopharm, 2004,58(2) : 301-316.
doi: 10.1016/j.ejpb.2004.03.027 pmid: 15296957 |
[28] |
Touitou E, Meidan V M, Horwitz E . Methods for quantitative determination of drug localized in the skin[J]. J Control Release, 1998,56(1-3) : 7-21.
doi: 10.1016/s0168-3659(98)00060-1 pmid: 9801425 |
[29] |
Lin F, Honghai H . Application of ATR-FTIR spectroscopy in polymer study[J]. Chemical Engineer, 2008 ( 3) : 33-35.
doi: 10.1016/j.jconrel.2019.11.033 pmid: 31785302 |
[30] | Huang H Y, Yin Q H . Fundamentals and application advances in attenuated total internal reflectance fourier transform infrared spectroscopy (ATR-FTIR)[J]. Journal of the Graduates Sun Yatsen University(Natural Sciences, Medicine), 2011,32(1) : 20-31. |
[31] |
Ayala-Bravo H A, Quintanar-Guerrero D, Naik A , et al. Effects of sucrose oleate and sucrose laureate on in vivo human stratum corneum permeability[J]. Pharm Res, 2003,20(8) : 1267-1273.
doi: 10.1023/a:1025013401471 pmid: 12948025 |
[32] | Yin Y N, Wang S, Gong Y Z , et al. A study on biochemical constitution of human skin tissue by confocal raman microspectroscopy imaging[J]. Acta Laser Biology Sinica, 2016,25(5) : 391-397. |
[33] |
Franzen L, Windbergs M . Applications of Raman spectroscopy in skin research: From skin physiology and diagnosis up to risk assessment and dermal drug delivery[J]. Adv Drug Deliv Rev, 2015,89:91-104.
doi: 10.1016/j.addr.2015.04.002 pmid: 25868454 |
[34] |
Förster M, Blozinger M A, Montagnac G , et al. Confocal Raman microspectroscopy of the skin[J]. Eur J Dermatol, 2011,6(21) : 851-863.
doi: 10.1684/ejd.2011.1494 pmid: 21914580 |
[35] |
Mateus R, Abdalghafor H, Oliveira G , et al. A new paradigm in dermatopharmacokinetics: confocal Raman spectroscopy[J]. Int J Pharm, 2013,444(1/2) : 106-108.
doi: 10.1016/j.ijpharm.2013.01.036 pmid: 23357254 |
[36] |
Tippavajhala V K, de Oliveira M T, Martin A A . In vivo human skin penetration study of sunscreens by confocal Raman spectroscopy[J]. AAPS PharmSciTech, 2018,19(2) : 753-760.
doi: 10.1208/s12249-017-0852-8 pmid: 28983836 |
[37] |
Ying Y C, Zhang G J, Jia H L , et al. Multi-photon skin tissue imaging technology and its applications[J]. Chinese Optics, 2019,12(1) : 104-111.
doi: 10.3788/co. |
[38] |
Alexiev U, Volz P, Boreham A , et al. Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine[J]. Eur J Pharm Biopharm, 2017,116:111-124.
doi: 10.1016/j.ejpb.2017.01.005 pmid: 28115230 |
[39] | Liu X B, Lin D Y, Wu Q Q , et al. Recent progress of fluorescence lifetime imaging microscopy technology and its application[J]. Chinese Journalof Physics, 2018,67(17) : 27-40. |
[40] |
Becker W . Fluorescence lifetime imaging: techniques and applications[J]. J Microsc, 2012,247(2) : 119-136.
doi: 10.1111/j.1365-2818.2012.03618.x pmid: 22621335 |
[41] |
Vieira C O, Grice J E, Roberts M S , et al. ZnO: SBA-15 nanocomposites for potential use in sunscreen: preparation, properties, human skin penetration and toxicity[J]. Skin Pharmacol Physiol, 2019,32(1) : 32-42.
doi: 10.1159/000491758 pmid: 30380537 |
[42] |
Leite-Silva V R, Liu D C, Sanchez W Y , et al. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles[J]. Nanomedicine (Lond), 2016,11(10) : 1193-1205.
doi: 10.2217/nnm-2016-0010 pmid: 27102240 |
[43] |
Liu F F . Analysis of Raman spectroscopy theory[J]. Technological Development of Enterprise, 2014, 33 (27) :71, 92.
doi: 10.1016/j.saa.2019.117958 pmid: 31865106 |
[44] |
Liu C, Huang W Q, Wang Q Y , et al. Application of Roman spectroscopy technique in food non-destructive determination[J]. Journal of Food Safety and Quality, 2015,6(8) : 2981-2987.
doi: 10.1007/s00216-018-1189-1 pmid: 29934851 |
[45] |
Munster E B V, Gadella T W J . Fluorescence lifetime imaging microscopy (FLIM)[J]. Adv Biochem Eng Biotechnol, 2005,95:143-175.
doi: 10.1007/b102213 pmid: 16080268 |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|