日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (3): 259-266.doi: 10.3969/j.issn.2097-2806.2024.03.003
收稿日期:
2024-02-09
修回日期:
2024-02-26
出版日期:
2024-03-22
发布日期:
2024-03-25
基金资助:
Jingxuan Liu1,2,Jianming Jin1,2,*(),Hua Wu1,2
Received:
2024-02-09
Revised:
2024-02-26
Online:
2024-03-22
Published:
2024-03-25
Contact:
*Tel.: +86-10-68984937, E-mail: 摘要:
文章介绍了皮肤真菌及其相关皮肤疾病,总结了植物提取物的抗真菌作用机理及其相应作用靶点。植物中具有抗真菌的活性成分主要为酚类、生物碱、黄酮、萜类、甾体和精油等。这些植物抗真菌活性成分的作用机制主要通过破坏真菌细胞壁和细胞膜结构而产生抗真菌功效:破坏细胞壁结构的作用靶点是抑制β-葡聚糖合酶、几丁质合酶和甘露聚糖合酶活性;作用于细胞膜的靶点是细胞膜的结构组分麦角甾醇和鞘脂,通过抑制其相关合成酶麦角甾醇合酶、丝氨酸软脂酰辅酶A转移酶、神经酰胺合酶和肌糖磷脂酰神经酰胺合酶,以及直接靶向结合麦角甾醇和鞘脂来破坏真菌细胞膜结构;另外,酚类、生物碱、黄酮、萜类和精油也可以靶向作用于线粒体,通过诱导活性氧积累、抑制ATP合成和质子泵,破坏线粒体呼吸和代谢系统,而产生抗真菌作用。文章通过对植物中的不同抗真菌活性成分和作用机制的阐述,希望能为抗真菌植物原料在化妆品中的开发提供借鉴,更好地维持皮肤健康。
中图分类号:
柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266.
Jingxuan Liu, Jianming Jin, Hua Wu. Botanical cosmetic ingredients (VII)Research and development of plant antifungal[J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 259-266.
[1] |
Chen Y E, Fischbach M A, Belkaid Y. Skin microbiota-host interactions[J]. Nature, 2018, 553 (7689) : 427-436.
doi: 10.1038/nature25177 |
[2] |
Jo J H, Kennedy E A, Kong H H. Topographical and physiological differences of the skin mycobiome in health and disease[J]. Virulence, 2017, 8 (3) : 324-333.
doi: 10.1080/21505594.2016.1249093 |
[3] |
Seebacher C, Bouchara J P, Mignon B. Updates on the epidemiology of dermatophyte infections[J]. Mycopathologia, 2008, 166 (5-6) : 335-352.
doi: 10.1007/s11046-008-9100-9 pmid: 18478365 |
[4] |
Gaitanis G, Magiatis P, Hantschke M, et al. The Malassezia genus in skin and systemic diseases[J]. Clinical Microbiology Reviews, 2012, 25 (1) : 106-141.
doi: 10.1128/CMR.00021-11 |
[5] |
Marples R R, McGinley K J, Mills O H. Microbiology of comedones in Acne vulgaris[J]. The Journal of Investigative Dermatology, 1973, 60 (2) : 80-83.
doi: 10.1111/1523-1747.ep12724149 |
[6] |
Zhan P, Liu W. The changing face of dermatophytic infections worldwide[J]. Mycopathologia, 2017, 182 (1-2) : 77-86.
doi: 10.1007/s11046-016-0082-8 pmid: 27783316 |
[7] |
Zhou X, Zeng M, Huang F, et al. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect[J]. Applied Microbiology and Biotechnology, 2023, 107: 4471-4492.
doi: 10.1007/s00253-023-12601-5 pmid: 37272939 |
[8] |
Adams D J. Fungal cell wall chitinases and glucanases[J]. Microbiology-Sgm, 2004, 150: 2029-2035.
doi: 10.1099/mic.0.26980-0 |
[9] |
Rajput S B, Karuppayil S M. Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans[J]. Springerplus, 2013, 2: 26.
doi: 10.1186/2193-1801-2-26 |
[10] |
Mani-Lopez E, Cortes-Zavaleta O, Lopez-Malo A. A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi[J]. Sn Applied Sciences, 2021, 3: 44.
doi: 10.1007/s42452-020-04102-1 |
[11] | Teodoro G R, Ellepola K, Seneviratne C J, et al. Potential use of phenolic acids as anti-Candida agents: A review[J]. Frontiers in Microbiology, 2015, 6: 1420. |
[12] |
Li D, Zhao L, Mylonakis E, et al. In vitro and in vivo activities of pterostilbene against Candida albicans biofilms[J]. Antimicrobial Agents and Chemotherapy, 2014, 58 (4) : 2344-2355.
doi: 10.1128/AAC.01583-13 pmid: 24514088 |
[13] |
Neelofar K, Shreaz S, Rimple B, et al. Curcumin as a promising anticandidal of clinical interest[J]. Canadian Journal of Microbiology, 2011, 57 (3) : 204-210.
doi: 10.1139/W10-117 pmid: 21358761 |
[14] |
Brasch J, Freitag-Wolf S, Beck-Jendroschek V, et al. Inhibition of dermatophytes by photodynamic treatment with curcumin[J]. Medical Mycology, 2017, 55 (7) : 754-762.
doi: 10.1093/mmy/myw139 pmid: 28053148 |
[15] |
Hwang B, Lee J, Liu Qinghe, et al. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii[J]. Molecules, 2010, 15 (5) : 3507-3516.
doi: 10.3390/molecules15053507 pmid: 20657496 |
[16] |
Madrid A, Espinoza L, Gonzalez C, et al. Antifungal study of the resinous exudate and of meroterpenoids isolated from Psoralea glandulosa (Fabaceae)[J]. Journal of Ethnopharmacology, 2012, 144 (3) : 809-811.
doi: 10.1016/j.jep.2012.10.027 |
[17] |
Liu X, Liu J, Jiang T, et al. Analysis of chemical composition and in vitro antidermatophyte activity of ethanol extracts of Dryopteris fragrans (L.) Schott[J]. Journal of Ethnopharmacology, 2018, 226: 36-43.
doi: 10.1016/j.jep.2018.07.030 |
[18] | Ahmad A, Khan A, Akhtar F, et al. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2011, 30 (1) : 41-50. |
[19] |
Niu C, Wang C, Yang Y, et al. Carvacrol induces Candida albicans apoptosis associated with Ca2+/calcineurin pathway[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 192.
doi: 10.3389/fcimb.2020.00192 |
[20] |
Pinto E, Vale-Silva L, Cavaleiro C, et al. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species[J]. Journal of Medical Microbiology, 2009, 58 (11) : 1454-1462.
doi: 10.1099/jmm.0.010538-0 |
[21] |
Dhamgaye S, Devaux F, Vandeputte P, et al. Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans[J]. Plos One, 2014, 9 (8) : e104554.
doi: 10.1371/journal.pone.0104554 |
[22] |
Rao G, Zhang S, Wang H, et al. Antifungal alkaloids from the fresh rattan stem of Fibraurea recisa Pierre[J]. Journal of Ethnopharmacology, 2009, 123 (1) : 1-5.
doi: 10.1016/j.jep.2009.02.046 |
[23] |
Bozin B, Mlmica-Dukic N, Samojlik I, et al. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., lamiaceae) essential oils[J]. Journal of Agricultural and Food Chemistry, 2007, 55 (19) : 7879-7885.
doi: 10.1021/jf0715323 |
[24] |
Luo N, Jin L, Yang C, et al. Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum[J]. Journal of Antibiotics, 2021, 74 (3) : 206-214.
doi: 10.1038/s41429-020-00380-4 |
[25] |
Wang T, Shi G, Shao J, et al. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction[J]. Microbial Pathogenesis, 2015, 87: 21-29.
doi: 10.1016/j.micpath.2015.07.006 |
[26] |
Kim Y. Antibiofilm activity of Scutellaria baicalensis through the inhibition of synthesis of the cell wall (1, 3)-β-D-glucan polymer[J]. Microbiology and Biotechnology Letters, 2013, 41 (1) : 88-95.
doi: 10.4014/kjmb |
[27] |
Salazar-Aranda R, Granados-Guzman G, Perez-Meseguer J, et al. Activity of polyphenolic compounds against Candida glabrata[J]. Molecules, 2015, 20 (10) : 17903-17912.
doi: 10.3390/molecules201017903 pmid: 26426003 |
[28] |
Lee H S, Kim Y. Myricetin disturbs the cell wall integrity and increases the membrane permeability of Candida albicans[J]. Journal of Microbiology and Biotechnology, 2022, 32 (1) : 37-45.
doi: 10.4014/jmb.2110.10014 |
[29] |
Yun D G, Lee D G. Assessment of silibinin as a potential antifungal agent and investigation of its mechanism of action[J]. Iubmb Life, 2017, 69 (8) : 631-637.
doi: 10.1002/iub.1647 pmid: 28636236 |
[30] |
Yun D G, Lee D G. Silymarin exerts antifungal effects via membrane-targeted mode of action by increasing permeability and inducing oxidative stress[J]. Biochimica Et Biophysica Acta-Biomembranes, 2017, 1859 (3) : 467-474.
doi: S0005-2736(17)30009-3 pmid: 28069415 |
[31] |
Lee W, Lee D G. Potential role of potassium and chloride channels in regulation of silymarin-induced apoptosis in Candida albicans[J]. Iubmb Life, 2018, 70 (3) : 197-206.
doi: 10.1002/iub.v70.3 |
[32] |
Messier C, Grenier D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans[J]. Mycoses, 2011, 54 (6) : E801-E806.
doi: 10.1111/myc.2011.54.issue-6 |
[33] |
Farhadi F, Khameneh B, Iranshahi M, et al. Antibacterial activity of flavonoids and their structure-activity relationship: An update review[J]. Phytotherapy Research, 2019, 33 (1) : 13-40.
doi: 10.1002/ptr.6208 pmid: 30346068 |
[34] |
Konuk H B, Erguden B. Phenolic -OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane integrity[J]. Folia Microbiologica, 2020, 65 (4) : 775-783.
doi: 10.1007/s12223-020-00787-4 pmid: 32193708 |
[35] |
Paduch R, Kandefer-Szerszen M, Trytek M, et al. Terpenes: substances useful in human healthcare[J]. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55 (5) : 315-327.
pmid: 18219762 |
[36] |
Kamatou G P P, Vermaak I, Viljoen A M, et al. Menthol: A simple monoterpene with remarkable biological properties[J]. Phytochemistry, 2013, 96: 15-25.
doi: 10.1016/j.phytochem.2013.08.005 pmid: 24054028 |
[37] |
Pereira F d O, Mendes J M, Lima I O, et al. Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis[J]. Pharmaceutical Biology, 2015, 53 (2) : 228-234.
doi: 10.3109/13880209.2014.913299 |
[38] |
Ishijima S A, Ezawa K, Abe S. Lemongrass and perilla essential oils synergistically increased antimicrobial activity[J]. Medical Mycology Journal, 2021, 62 (4) : 79-87.
doi: 10.3314/mmj.21-00011 pmid: 34853254 |
[39] | Alvino Leite M C, de Brito Bezerra A P, de Sousa J P, et al. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans[J]. Evidence-Based Complementary and Alternative Medicine, 2014, 2014 (9) : 1-9. |
[40] |
Dahham S S, Tabana Y M, Iqbal M A, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna[J]. Molecules, 2015, 20 (7) : 11808-11829.
doi: 10.3390/molecules200711808 pmid: 26132906 |
[41] |
Duraipandiyan V, Al-Harbi N A, Ignacimuthu S, et al. Antimicrobial activity of sesquiterpene lactones isolated from traditional medicinal plant, Costus speciosus (Koen ex.Retz.) Sm[J]. Bmc Complementary and Alternative Medicine, 2012, 12: 13.
doi: 10.1186/1472-6882-12-13 pmid: 22397713 |
[42] | Jyothilakshmi M, Jyothis M, Narayanan G N H, et al. Antidermatophytic and protease-inhibiting activities of zerumbone: A natural sesquiterpene from the rhizome of Zingiber zerumbet (L.) Roscoe ex J.E; Smith[J]. Pharmacognosy Magazine, 2017, 13 (49) : 2-6. |
[43] | Doungchawee J, Kulsing C, Suekaew N, et al. Volatile chemical composition, antibacterial and antifungal ctivities of extracts from different parts of Globba schomburgkii Hook.f[J]. Chemistry & Biodiversity, 2019, 16 (5). |
[44] |
Xu W, Li J, Li D, et al. Chemical characterization, antiproliferative and antifungal activities of Clinacanthus nutans[J]. Fitoterapia, 2021, 155: 105061.
doi: 10.1016/j.fitote.2021.105061 |
[45] |
Cho J, Choi H, Lee J, et al. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica[J]. Biochimica Et Biophysica Acta-Biomembranes, 2013, 1828 (3) : 1153-1158.
doi: 10.1016/j.bbamem.2012.12.010 |
[46] |
Barros Cota B, Carneiro de Oliveira D B, Carla Borges T, et al. Antifungal activity of extracts and purified saponins from the rhizomes of Chamaecostus cuspidatus against Candida and Trichophyton species[J]. Journal of Applied Microbiology, 2021, 130 (1) : 61-75.
doi: 10.1111/jam.v130.1 |
[47] |
Zhang J, Xu Z, Cao Y, et al. Antifungal activities and action mechanisms of compounds from Tribulus terrestris L[J]. Journal of Ethnopharmacology, 2006, 103 (1) : 76-84.
doi: 10.1016/j.jep.2005.07.006 |
[48] |
Wang M, Peng Y, Peng C, et al. The bioassay-guided isolation of antifungal saponins from Hosta plantaginea leaves[J]. Journal of Asian Natural Products Research, 2018, 20 (6) : 501-509.
doi: 10.1080/10286020.2017.1329304 |
[49] |
Singh D N, Verma N, Raghuwanshi S, et al. Antifungal activity of Agapanthus africanus extractives[J]. Fitoterapia, 2008, 79 (4) : 298-300.
doi: 10.1016/j.fitote.2007.12.004 pmid: 18343601 |
[50] |
Stergiopoulou T, De Lucca A J, Meletiadis J, et al. In vitro activity of CAY-1, a saponin from Capsicum frutescens, against Microsporum and Trichophyton species[J]. Medical Mycology, 2008, 46 (8) : 805-810.
doi: 10.1080/13693780802089831 pmid: 18608885 |
[51] |
Sharmeen J B, Mahomoodally F M, Zengin G, et al. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals[J]. Molecules, 2021, 26 (3) : 666.
doi: 10.3390/molecules26030666 |
[52] |
Suradeep B, Proshanta G. A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system[J]. Journal of Food Science and Technology, 2018, 55 (12) : 4701-4710.
doi: 10.1007/s13197-018-3394-5 pmid: 30482966 |
[53] |
Hammer K A, Carson C F, Riley T V. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae[J]. Journal of Antimicrobial Chemotherapy, 2004, 53 (6) : 1081-1085.
doi: 10.1093/jac/dkh243 pmid: 15140856 |
[54] |
Carson C F, Hammer K A, Riley T V. Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties[J]. Clinical Microbiology Reviews, 2006, 19 (1) : 50.
doi: 10.1128/CMR.19.1.50-62.2006 pmid: 16418522 |
[55] |
Li Y, Shao X, Xu J, et al. Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria[J]. Food Chemistry, 2017, 234: 62-67.
doi: 10.1016/j.foodchem.2017.04.172 |
[56] | Michalczyk A, Ostrowska P. Essential oils and their components in combating fungal pathogens of animal and human skin[J]. Journal De Mycologie Medicale, 2021, 31 (2) : 101118. |
[57] |
Endo E H, Garcia Cortez D A, Ueda-Nakamura T, et al. Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans[J]. Research in Microbiology, 2010, 161 (7) : 534-540.
doi: 10.1016/j.resmic.2010.05.002 |
[58] |
Nair S V, Baranwal G, Chatterjee M, et al. Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans[J]. International Journal of Medical Microbiology, 2016, 306 (4) : 237-248.
doi: 10.1016/j.ijmm.2016.05.004 |
[59] |
Laokor N, Juntachai W. Exploring the antifungal activity and mechanism of action of Zingiberaceae rhizome extracts against Malassezia furfur[J]. Journal of Ethnopharmacology, 2021, 279: 114354.
doi: 10.1016/j.jep.2021.114354 |
[60] |
Xavier M R, Silva Santos M M, Queiroz M G, et al. Lawsone, a 2-hydroxy-1, 4-naphthoquinone from Lawsonia inermis (henna), produces mitochondrial dysfunctions and triggers mitophagy in Saccharomyces cerevisiae[J]. Molecular Biology Reports, 2020, 47 (2) : 1173-1185.
doi: 10.1007/s11033-019-05218-3 |
[1] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[2] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[3] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[4] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[5] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[6] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[7] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[8] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[9] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[10] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[11] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[12] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[13] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[14] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
[15] | 韩旭, 吴槚佳, 武娜, 尚亚卓. 新型乳化体系及其在化妆品中的应用(V)——Janus乳液[J]. 日用化学工业(中英文), 2024, 54(1): 24-31. |
|