日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (1): 80-89.doi: 10.3969/j.issn.2097-2806.2024.01.011
李宁1,2,李恩念2,陈红波3,程芳3,邹衡芳2,陈鸿鹏1,2,*()
收稿日期:
2022-12-31
修回日期:
2023-12-27
出版日期:
2024-01-22
发布日期:
2024-01-26
基金资助:
Ning Li1,2,Ennian Li2,Hongbo Chen3,Fang Cheng3,Hengfang Zou2,Hongpeng Chen1,2,*()
Received:
2022-12-31
Revised:
2023-12-27
Online:
2024-01-22
Published:
2024-01-26
Contact:
*Tel.: +86-13922096752, E-mail: chenhongpeng007@126.com.
摘要:
皮肤细胞中黑色素沉着过度会导致皮肤疾病,如炎症后色素沉着、日光性黑子、黄褐斑和雀斑等。祛斑美白类化妆品可用于临床辅助治疗黑色素沉着过度,其作用机制涉及抑制黑色素合成、还原黑色素、抑制黑素小体转运等。祛斑美白类化妆品中的美白原料,通过抑制黑色素生物合成途径的限速酶酪氨酸酶,参与调控黑色素生物合成的信号通路,还原黑色素或抑制黑素小体转运等作用机制达到美白的作用。随着市场对祛斑美白类化妆品的需求日渐增加,越来越多的天然活性成分作为美白原料添加到化妆品中,但是存在着成分不明确、作用机理缺失等问题。文章梳理了现有祛斑美白类化妆品功效成分的作用机理并分类归纳讨论,旨在为皮肤色素沉着防治的临床策略以及祛斑美白类化妆品的产品开发提供理论依据。
中图分类号:
李宁, 李恩念, 陈红波, 程芳, 邹衡芳, 陈鸿鹏. 祛斑美白类化妆品功效成分的研究现状[J]. 日用化学工业(中英文), 2024, 54(1): 80-89.
Ning Li, Ennian Li, Hongbo Chen, Fang Cheng, Hengfang Zou, Hongpeng Chen. Advances of functional components in whitening cosmetic[J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 80-89.
[1] |
Shan M A, Meyer O S, Refn M, et al. Analysis of skin pigmentation and genetic ancestry in three subpopulations from pakistan: Punjabi, pashtun, and baloch[J]. Genes, 2021, 12 (5) : 733.
doi: 10.3390/genes12050733 |
[2] | Lyon. Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide: this publication represents the views and expert opinions of an IARC working group on the evaluation of carcinogenic risks to humans[M]. Lyon: International Agency for Research on Cancer, 1998: 17-24. |
[3] |
Solano F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources[J]. Molecules, 2020, 25 (7) : 1537.
doi: 10.3390/molecules25071537 |
[4] |
Naik P P, Farrukh S N. Influence of ethnicities and skin color variations in different populations: A review[J]. Skin Pharmacology and Physiology, 2022, 35 (2) : 65-76.
doi: 10.1159/000518826 |
[5] |
Cao W, Zhou X, McCallum N C, et al. Unraveling the structure and function of melanin through synthesis[J]. Journal of the American Chemical Society, 2021, 143 (7) : 2622-2637.
doi: 10.1021/jacs.0c12322 pmid: 33560127 |
[6] |
Lai X, Wichers H J, Soler-Lopez M. Structure and function of human tyrosinase and tyrosinase-related proteins[J]. Journal of Chemistry-A European, 2017, 24 (1) : 47-55.
doi: 10.1002/chem.v24.1 |
[7] |
Matoba Y, Kumagai T, Yamamoto A, et al. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis[J]. Journal of Biological Chemistry, 2006, 281 (13) : 8981-8990.
doi: 10.1074/jbc.M509785200 pmid: 16436386 |
[8] |
Nasti T H, Timares L. MC1R, Eumelanin and pheomelanin: Their role in determining the susceptibility to skin cancer[J]. Photochemistry and Photobiology, 2015, 91 (1) : 188-200.
doi: 10.1111/php.12335 pmid: 25155575 |
[9] | Nahhas A F, Abdel‐Malek Z A, Kohli I, et al. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light‐induced oxidative stress[J]. Photodermatology, Photoimmunology & Photomedicine, 2019, 35 (6) : 420-428. |
[10] |
Lerner Aaron Bunsen, Fitzpatrick T B, Calkins Evan, et al. Mammalian tyrosinase: The relationship of copper to enzymatic activity[J]. Journal of Biological Chemistry, 1950, 187 (2) : 793-802.
doi: 10.1016/S0021-9258(18)56226-8 |
[11] |
Wang W, Gao Y, Wang W, et al. Kojic acid showed consistent inhibitory activity on tyrosinase from mushroom and in cultured B16F10 cells compared with arbutins[J]. Antioxidants, 2022, 11 (3) : 502.
doi: 10.3390/antiox11030502 |
[12] |
Nerya O, Musa R, Khatib S, et al. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers[J]. Phytochemistry, 2004, 65 (10) : 1389-1395.
doi: 10.1016/j.phytochem.2004.04.016 pmid: 15231412 |
[13] |
Tai S, Lin C G, Wu M H, et al. Evaluation of depigmenting activity by 8-hydroxydaidzein in mouse B16 melanoma cells and human volunteers[J]. International Journal of Molecular Sciences, 2009, 10 (10) : 4257-4266.
doi: 10.3390/ijms10104257 |
[14] |
Fan M, Zhang G, Hu X, et al. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism[J]. Food Research International, 2017, 100: 226-233.
doi: S0963-9969(17)30332-0 pmid: 28873682 |
[15] |
Song X, Ni M, Zhang Y, et al. Comparing the inhibitory abilities of epigallocatechin-3-gallate and gallocatechin gallate against tyrosinase and their combined effects with kojic acid[J]. Food Chemistry, 2021, 349: 129172.
doi: 10.1016/j.foodchem.2021.129172 |
[16] |
Fu B, Li H, Wang X, et al. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase[J]. Journal of Agricultural and Food Chemistry, 2005, 53 (19) : 7408-7414.
doi: 10.1021/jf051258h pmid: 16159166 |
[17] |
Lin Y P, Hsu F L, Chen C S, et al. Constituents from the Formosan apple reduce tyrosinase activity in human epidermal melanocytes[J]. Phytochemistry, 2007, 68 (8) : 1189-1199.
doi: 10.1016/j.phytochem.2007.02.001 |
[18] |
Wang W, Gao Y, Wang W, et al. Kojic acid showed consistent inhibitory activity on tyrosinase from mushroom and in cultured B16F10 cells compared with arbutins[J]. Antioxidants, 2022, 11 (3) : 502.
doi: 10.3390/antiox11030502 |
[19] |
Funayama M, Arakawa H, Yamamoto R, et al. Effects of α- and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma[J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59 (1) : 143-144.
doi: 10.1271/bbb.59.143 pmid: 7765966 |
[20] |
Kim E S, Chang H, Choi H, et al. Autophagy induced by resveratrol suppresses α-MSH-induced melanogenesis[J]. Experimental Dermatology, 2014, 23 (3) : 204-206.
doi: 10.1111/exd.12337 pmid: 24499351 |
[21] |
Lee S J, Son Y H, Lee K B, et al. 4-n-Butylresorcinol enhances proteolytic degradation of tyrosinase in B16F10 melanoma cells[J]. International Journal of Cosmetic Science, 2017, 39 (3) : 248-255.
doi: 10.1111/ics.12368 pmid: 27666581 |
[22] |
Chen Q X, Ke L N, Song K K, et al. Inhibitory effects of hexylresorcinol and dodecylresorcinol on mushroom (agaricus bisporus) tyrosinase[J]. The Protein Journal, 2004, 23 (2) : 135-141.
doi: 10.1023/B:JOPC.0000020080.21417.ff |
[23] | Peng Nin, Zhang Haibo, Zhang Yun. The inhibition effect of yeast extraction on polyphenol oxidase and melanoma cells[J]. Flavour Fragrance Cosmetics, 2013 (3) : 24-26. |
[24] | Wang Guolin. Study on active constituents of whitening and moisturizing from Matricaria recutita L. extract[D]. Wuxi: Jiangnan University, 2016. |
[25] | Yao Xiaohua, Zhu Yaxin. The efficacy and application of camellia seed oil[J]. Flavour Fragrance Cosmetics, 2018 (5) : 74-78. |
[26] | Esp J C. E¡ect of captopril on mushroom tyrosinase activity in vitro[J]. Biochimica et Biophysica Acta, 2001, 1544: 289-300. |
[27] |
Panich U, Tangsupa-a-nan V, Onkoksoong T, et al. Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system[J]. Archives of Pharmacal Research, 2011, 34 (5) : 811-820.
doi: 10.1007/s12272-011-0515-3 pmid: 21656367 |
[28] |
Chen S J, Hseu Y C, Gowrisankar Y V, et al. The anti-melanogenic effects of 3-O-ethyl ascorbic acid via Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes and autophagy induction in melanocytes[J]. Free Radical Biology and Medicine, 2021, 173: 151-169.
doi: 10.1016/j.freeradbiomed.2021.07.030 |
[29] |
Sonthalia S, Daulatabad D, Sarkar R. Glutathione as a skin whitening agent: Facts, myths, evidence and controversies[J]. Indian Journal of Dermatology, Venereology, and Leprology, 2016, 82 (3) : 262.
doi: 10.4103/0378-6323.179088 |
[30] | Ohbayashi N, Fukuda M. Recent advances in understanding the molecular basis of melanogenesis in melanocytes[J]. Journal of F1000 Research, 2020, 9: 608. |
[31] |
Hakozaki T, Minwalla L, Zhuang J, et al. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer[J]. British Journal of Dermatology, 2002, 147 (1) : 20-31.
pmid: 12100180 |
[32] |
Liu J, Jiang R, Zhou J, et al. Salicylic acid in ginseng root alleviates skin hyperpigmentation disorders by inhibiting melanogenesis and melanosome transport[J]. European Journal of Pharmacology, 2021, 910: 174458.
doi: 10.1016/j.ejphar.2021.174458 |
[33] | Wang J, Jarrold B, Zhao W, et al. The combination of sucrose dilaurate and sucrose laurate suppresses HMGB1: an enhancer of melanocyte dendricity and melanosome transfer to keratinocytes[J]. Journal of the European Academy of Dermatology and Venereology, 2022, 36(S3) : 3-11. |
[34] |
Sun M, Xie H, Tang Y, et al. G Protein-coupled estrogen receptor enhances melanogenesis via cAMP-protein kinase (PKA) by upregulating microphthalmia-related transcription factor-tyrosinase in melanoma[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 165: 236-246.
doi: 10.1016/j.jsbmb.2016.06.012 |
[35] | Xu Kai, Xu Hujun. Synthesis of undecylenoyl phenylalanine and its inhibition of tyrosinase diphenolase activity[J]. China Surfactant Detergent & Cosmetics, 2016, 46 (10) : 591-595. |
[36] |
Jeong Y M, Oh W K, Tran T L, et al. Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: Possible involvement of the protein kinase a pathway[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77 (1) : 119-125.
doi: 10.1271/bbb.120602 |
[37] |
Lee H R, Jung J M, Seo J Y, et al. Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin[J]. Journal of Ginseng Research, 2021, 45 (5) : 555-564.
doi: 10.1016/j.jgr.2020.11.003 |
[38] |
Yang H L, Lin C P, Vudhya Gowrisankar Y, et al. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes[J]. Biochemical Pharmacology, 2021, 185: 114454.
doi: 10.1016/j.bcp.2021.114454 |
[39] |
Khaled M, Larribere L, Bille K, et al. Glycogen synthase kinase 3β is activated by cAMP and plays an active role in the regulation of melanogenesis[J]. Journal of Biological Chemistry, 2002, 277 (37) : 33690-33697.
doi: 10.1074/jbc.M202939200 pmid: 12093801 |
[40] |
Jang J Y, Lee J H, Jeong S Y, et al. Partially purified Curcuma longa inhibits alpha-melanocyte-stimulating hormone-stimulated melanogenesis through extracellular signal-regulated kinase or Akt activation-mediated signalling in B16F10 cells[J]. Experimental Dermatology, 2009, 18 (8) : 689-694.
doi: 10.1111/exd.2009.18.issue-8 |
[41] | Zhao M J, Hu J J, Ni H, et al. Research progress in melanogenesis signaling pathway[J]. Chinese Journal of Biotechnology, 2019, 35 (9) : 1633-1642. |
[42] |
Kamei Y, Otsuka Y, Abe K. Comparison of the inhibitory effects of vitamin E analogues on melanogenesis in mouse B16 melanoma cells[J]. Cytotechnology, 2009, 59 (3) : 183-190.
doi: 10.1007/s10616-009-9207-y pmid: 19568943 |
[43] |
Kang M, Park S H, Park S J, et al. p44/42 MAPK Signaling is a prime target activated by phenylethyl resorcinol in its anti-melanogenic action[J]. Phytomedicine, 2019, 58: 152877.
doi: 10.1016/j.phymed.2019.152877 |
[44] |
Kim S J, Park J Y, Shibata T, et al. Efficacy and possible mechanisms of topical tranexamic acid in melasma[J]. Clinical and Experimental Dermatology, 2016, 41 (5) : 480-485.
doi: 10.1111/ced.12835 pmid: 27135282 |
[45] |
Kim J Y, Lee E J, Ahn Y, et al. A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation[J]. Phytomedicine, 2019, 57: 57-64.
doi: 10.1016/j.phymed.2018.12.007 |
[46] |
Larue L. The Wnt/beta-catenin pathway in melanoma[J]. Frontiers in Bioscience, 2006, 11 (1) : 733.
doi: 10.2741/1831 |
[47] |
Zhou S, Sakamoto K. Citric acid promoted melanin synthesis in B16F10 mouse melanoma cells, but inhibited it in human epidermal melanocytes and HMV-II melanoma cells via the GSK3β/β-catenin signaling pathway[J]. PLOS ONE, 2020, 15 (12) : e0243565.
doi: 10.1371/journal.pone.0243565 |
[48] |
Zhu P Y, Yin W H, Wang M R, et al. Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway[J]. Journal of Dermatological Science, 2015, 79 (1) : 74-83.
doi: 10.1016/j.jdermsci.2015.03.013 |
[49] |
Wobst J. Genetic alterations in the NO-cGMP pathway and cardiovascular risk[J]. Nitric Oxide, 2018, 76: 105-112.
doi: S1089-8603(17)30354-3 pmid: 29601927 |
[50] | Cheng Jiyan, Guo Yong, Huang Jichun, et al. Effects of Luhui Dahuangsu on nitric oxide synthase in melanocyte of Guinea pig’ s skin[J]. Sichuan Journal of Anatomy, 2003 (2) : 9-11. |
[51] |
Liu J, Xu X, Jiang R, et al. Vanillic acid in Panax ginseng root extract inhibits melanogenesis in B16F10 cells via inhibition of the NO/PKG signaling pathway[J]. Bioscience, Biotechnology, and Biochemistry, 2019, 83 (7) : 1205-1215.
doi: 10.1080/09168451.2019.1606694 |
[52] |
Lee C C, Chen Y T, Chiu C C, et al. Polygonum cuspidatum extracts as bioactive antioxidaion, anti-tyrosinase, immune stimulation and anticancer agents[J]. Journal of Bioscience and Bioengineering, 2015, 119 (4) : 464-469.
doi: 10.1016/j.jbiosc.2014.09.008 |
[53] |
Park H J, Cho J H, Hong S H, et al. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells[J]. Journal of Natural Medicines, 2018, 72 (1) : 127-135.
doi: 10.1007/s11418-017-1120-7 |
[54] |
Pratchyapurit W. Combined use of two formulations containing diacetyl boldine, TGF-β1 biomimetic oligopeptide-68 with other hypopigmenting/exfoliating agents and sunscreen provides effective and convenient treatment for facial melasma. Either is equal to or is better than[J]. Journal of Cosmetic Dermatology, 2016, 15 (2) : 131-144.
doi: 10.1111/jocd.12201 pmid: 26833454 |
[55] | Cui Yingyun, Li Chuanmao. Study on the stability of whitening formulas of potassium 4-methoxysalicylate[J]. Detergent & Cosmetics, 2020, 43 (9) : 26-30. |
[56] |
Fitton A, Goa K L. Azelaic acid: a review of its pharmacological properties and therapeutic efficacy in acne and hyperpigmentary skin disorders[J]. Drugs, 1991, 41 (5) : 780-798.
doi: 10.2165/00003495-199141050-00007 pmid: 1712709 |
[57] | Li Ruibin, Wang Qian, Zhang Leijie, et al. Inhibition of tyrosinase activity and melanin synthesis by milk exosomes loaded with tyrosinase inhibitory peptide[J]. Journal of Tianjin Medical University, 2022, 28 (4) : 348-352, 371. |
[58] |
Jang B, Chung H, Jung H, et al. Extracellular vesicles from korean Codium fragile and Sargassum fusiforme negatively regulate melanin synthesis[J]. Molecules and Cells, 2021, 44 (10) : 736-745.
doi: 10.14348/molcells.2021.2167 |
[59] | Wang X Y, Guan X H, Yu Z P, et al. Human amniotic stem cells-derived exosmal miR-181a-5p and miR-199a inhibit melanogenesis and promote melanosome degradation in skin hyperpigmentation, respectively[J]. Stem Cell Research & Therapy, 2021, 12 (1) : 501. |
[1] | 郭芳钰, 韩婷婷, 王晓娜, 陈玉荣, 王晓梅, 杨素珍. 中药双向发酵液制备及其抗衰老、保湿、美白功效研究[J]. 日用化学工业(中英文), 2023, 53(5): 523-531. |
[2] | 杨小玉, 刘金俊, 刘蕾, 何聪芬, 毕永贤, 李昊. 黑色素的生成代谢机制及研究方法进展[J]. 日用化学工业(中英文), 2023, 53(10): 1194-1203. |
[3] | 钟美莹, 张浩, 黄琴, 唐文迪, 蓝爱玲. 基于表观遗传学的皮肤抗衰及相关化妆品的研究与发展[J]. 日用化学工业(中英文), 2023, 53(10): 1220-1226. |
[4] | 严俊,王容,李泽桦,张丽媛,程巧鸳,颜琳琦. 祛斑美白类化妆品中6种功效成分的同时测定及使用情况分析[J]. 日用化学工业, 2022, 52(7): 791-796. |
[5] | 方婷欢,蒋晴,唐礼荣. 烟酰胺与茶多酚复配对抑制PIG1细胞黑色素的影响[J]. 日用化学工业, 2022, 52(6): 632-637. |
[6] | 吴亚妮,吕晓帆,王莹,唐寅. 苦水玫瑰精油对B16细胞中黑色素合成的影响及机制研究[J]. 日用化学工业, 2022, 52(3): 278-286. |
[7] | 张凯强,许虎君. 二葡糖基没食子酸的合成及其性能研究[J]. 日用化学工业, 2022, 52(2): 140-146. |
[8] | 金佳颖,陈露,王欣之,刘睿,吴皓. 珍珠灵芝复配物美白功效与机理初步研究[J]. 日用化学工业, 2022, 52(2): 166-171. |
[9] | 查雨锋,黄加文,詹易,李婷,颜宏,吴德松. 白梅花提取物抗氧化及美白功效评价[J]. 日用化学工业, 2022, 52(2): 172-179. |
[10] | 赵胜男,郭苗苗,蔡孟浩,洪民华,吕智,安法梁. 发酵莲花花瓣美白功效提升及作用机制研究[J]. 日用化学工业(中英文), 2022, 52(10): 1029-1039. |
[11] | 何瑞源,王硕,韦桂丽,龚小妹,吴佩莹,缪剑华. 壮药菲牛蛭提取物的美白作用及其机制初探[J]. 日用化学工业, 2022, 52(1): 35-43. |
[12] | 薛婉婷,李丽,董银卯,郭苗苗. 美白功效评价现状及发展趋势[J]. 日用化学工业, 2021, 51(9): 890-896. |
[13] | 任倩倩,吴华,金建明. 化妆品植物原料(IV)——抑制黑色素合成信号通路的植物美白原料的研究与开发[J]. 日用化学工业, 2021, 51(7): 590-597. |
[14] | 任倩倩,吴华,金建明. 化妆品植物原料(Ⅱ)——抑制酪氨酸酶活性的植物美白原料的研究与开发[J]. 日用化学工业, 2021, 51(3): 178-185. |
[15] | 王莹,唐寅,吴亚妮. 复方精油对小鼠B16细胞内黑色素生成影响[J]. 日用化学工业, 2021, 51(3): 214-219. |
|