日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (10): 1220-1226.doi: 10.3969/j.issn.2097-2806.2023.10.014
收稿日期:
2022-09-05
修回日期:
2023-09-27
出版日期:
2023-10-22
发布日期:
2023-10-27
Zhong Meiying1,Zhang Hao1,*(),Huang Qin1,2,Tang Wendi1,Lan Ailing1
Received:
2022-09-05
Revised:
2023-09-27
Online:
2023-10-22
Published:
2023-10-27
Contact:
*Tel.: +86-18027364231, E-mail: 摘要:
表观遗传学是指不涉及DNA序列改变的基因或者蛋白表达的变化,并可以在发育和细胞增殖过程中稳定传递的遗传学分支学科。表观遗传学与人体皮肤衰老密切相关,其表现为人体皮肤表观遗传修饰的变化。通过研究及利用表观遗传修饰可逆转的特性,能够将表观遗传学的研究应用到皮肤抗衰及抗衰相关化妆品领域当中。文章概述了表观遗传学在皮肤抗衰及化妆品研究与应用当中的主要内容,通过DNA甲基化、组蛋白修饰和微小RNA调控在细胞外基质调节,细胞增殖分化调控,黑色素合成或代谢调节,抗氧化应激能力调节上的表观遗传修饰表现形式及逆转方式,展示了基于表观遗传学的多种皮肤抗衰机制;以及通过人体衰老过程中表观遗传修饰的变化,对皮肤衰老的原因和表征进行解释,为抗衰相关化妆品的研发提供科学依据。本文综述了表观遗传学与皮肤抗衰相关的多种作用机制的关系与表现形式,为皮肤衰老研究提供理论依据,并对未来抗衰相关化妆品的发展进行展望。
中图分类号:
钟美莹, 张浩, 黄琴, 唐文迪, 蓝爱玲. 基于表观遗传学的皮肤抗衰及相关化妆品的研究与发展[J]. 日用化学工业(中英文), 2023, 53(10): 1220-1226.
Zhong Meiying, Zhang Hao, Huang Qin, Tang Wendi, Lan Ailing. Research and development of skin anti-aging and related cosmetics based on epigenetics[J]. China Surfactant Detergent & Cosmetics, 2023, 53(10): 1220-1226.
表1
基于表观遗传学的皮肤抗衰机制汇总"
表观遗传学主要内容 | 皮肤抗衰机制 | |||
---|---|---|---|---|
细胞外基质调节 | 细胞增殖分化调控 | 黑色素合成或代谢调节 | 抗氧化应激能力调节 | |
DNA甲基化 | 通过DNA的甲基化或去甲基化,调控Ⅰ型胶原蛋白的合成或成纤维细胞的凋亡 | — | — | 通过调节DNMTs的表达水平,防御UVA诱导的ROS皮肤损伤和光老化 |
组蛋白修饰 | Sirt1通过去乙酰化,降低皮肤中MMP-9的表达,减少ECM相关蛋白的降解 | Myc通过诱导和修饰相关组蛋白,调控表皮干细胞的增殖分化特性 | — | SIRT3通过上调线粒体SOD2的表达,防御UVB诱导的ROS皮肤损伤;SIRT1通过调控FOXO信号通路,启 动细胞抗氧化途径 |
微小RNA调控 | 通过miR-152、miR-181a、miR-34家族、miR-29家族及miR-424等的差异性表达,调控Ⅰ型胶原蛋白合成或成纤维细胞增殖或衰老进程 | — | miR-145,miR-218,miR-675,miR-141-3p和miR-200a-3p等通过对Myo5a或Mitf的直接靶向作用,调控黑素体运输或黑色素生成的色素过程 | — |
[1] |
Holliday R. Epigenetics: a historical overview[J]. Epigenetics, 2006, 1 (2) : 76-80.
doi: 10.4161/epi.1.2.2762 pmid: 17998809 |
[2] | You Yuanyuan, Hao Changfu, Yao Wu. Progress in epigenetics and its application[J]. Modern Preventive Medicine, 2012, 39 (3) : 715-717. |
[3] | Isaacman S, Isaacman M, Holub J M. Silencing RNA for cosmetic effects[J]. Cosmetics & Toiletries, 2013, 128 (3) : 144-147. |
[4] |
Waddington C H. The epigenotype[J]. International Journal of Epidemiology, 2012, 41 (1) : 10-13.
doi: 10.1093/ije/dyr184 pmid: 22186258 |
[5] | Xue Jinglun. Epigenetics: principle, technology and practice[M]. Shanghai: Shanghai Science and Technology Press, 2006. |
[6] | Ramahi A, Altorok N, Kahaleh B. Epigenetics and systemic sclerosis: An answer to disease onset and evolution?[J]. European Journal of Rheumatology, 2020, 7 (S3) : S147-S156. |
[7] |
Kitazawa S, Ohno T, Haraguchi R, et al. Histochemistry, cytochemistry and epigenetics[J]. Acta Histochemica et Cytochemica, 2022, 55 (1) : 1-7.
doi: 10.1267/ahc.21-00095 pmid: 35444348 |
[8] |
Klose R J, Bird A P. Genomic DNA methylation: the mark and its mediators[J]. Trends Biochem Sci, 2006, 31 (2) : 89-97.
doi: 10.1016/j.tibs.2005.12.008 pmid: 16403636 |
[9] | Zhao Wenjuan. Epigenetic study of tumorigenesis[J]. Modern Medicine Journal of China, 2009, 11 (11) : 122-124. |
[10] |
Wolf S S. The protein arginine methylransferase family: an update about function, new perspectives and the physiological role in humans[J]. Cell Mol Life Sci, 2009, 66 (13) : 2109-2121.
doi: 10.1007/s00018-009-0010-x pmid: 19300908 |
[11] |
Henikoff S, Furuyama T. The unconventional structure of centromeric nucleosomes[J]. Chromosoma, 2012, 121 (4) : 341-352.
doi: 10.1007/s00412-012-0372-y pmid: 22552438 |
[12] |
Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120 (1) : 15-20.
doi: 10.1016/j.cell.2004.12.035 pmid: 15652477 |
[13] |
Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116 (2) : 281-297.
doi: 10.1016/s0092-8674(04)00045-5 pmid: 14744438 |
[14] | Zhao Xiaomin, Zhao Yunshan, Qu Xin. Research on anti-aging active substance of bright white based on epigenetics[J]. China Surfactant Detergent & Cosmetics, 2016, 46 (5) : 274-278. |
[15] |
Anderson A, Bowman A, Boulton S J, et al. A role for human mitochondrial complex Ⅱ in the production of reactive oxygen species in human skin[J]. Redox Biology, 2014, 2: 1016-1022.
doi: 10.1016/j.redox.2014.08.005 |
[16] | Xuan Min, Cheng Biao. Molecular mechanism of skin aging[J]. Chinese Journal of Gerontology, 2015, 35 (15) : 4375-4380. |
[17] | Dukes, Li Zeqiao, Zhang Baojiang, et al. Appearance changes and formation factors of facial skin aging[J]. China Surfactant Detergent &Cosmetics, 2022, 52 (2) : 199-206. |
[18] |
Naylor E C, Watson R E B, Sherratt M J. Molecular aspects of skin ageing[J]. Maturitas, 2011, 69 (3) : 249-256.
doi: 10.1016/j.maturitas.2011.04.011 pmid: 21612880 |
[19] | Ganceviciene R, Liakou A I, Theodoridis A, et al. Skin anti-aging strategies[J]. Dermatol Endocrinol, 2012, 4 (3) : 308-319. |
[20] |
Ho C Y, Dreesen O. Faces of cellular senescence in skin aging[J]. Mechanisms of Ageing and Development, 2021, 198: 111525.
doi: 10.1016/j.mad.2021.111525 |
[21] | Xia Xue, Wu Ying, Yan zaihao. Research progress on mechanism and application technology of anti-aging active substances in cosmetics[J]. Flavour Fragrance Cosmetics, 2018 (3) : 79-82. |
[22] |
Kim M K, Kim E J, Cheng Y, et al. Inhibition of DNA methylation in the COL1A2 promoter by anacardic acid prevents UV-induced decrease of type I procollagen expression[J]. Journal of Investigative Dermatology, 2017, 137 (6) : 1343-1352.
doi: 10.1016/j.jid.2017.02.005 |
[23] | Lin J, Qin H, Wu W, et al. Vitamin C protects against UV irradiation-induced apoptosis through reactivating silenced tumor suppressor genes p21 and p16 in a Tet-dependent DNA demethylation manner in human skin cancer cells[J]. Cancer Biotherapy and Radiopharmaceuticals, 2014, 29 (6) : 257-264. |
[24] |
Cao C, Lu S, Kivlin R, et al. SIRT1 Confers protection against UVB-and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes[J]. Journal of Cellular and Molecular Medicine, 2009, 13(9B): 3632-3643.
doi: 10.1111/jcmm.2010.13.issue-9b |
[25] |
Smith-Vikos T, Slack F J. MicroRNAs and their roles in aging[J]. Journal of Cell Science, 2012, 125 (1) : 7-17.
doi: 10.1242/jcs.099200 |
[26] |
Dimmeler S, Nicotera P. MicroRNAs in age‐related diseases[J]. EMBO Molecular Medicine, 2013, 5 (2) : 180-190.
doi: 10.1002/emmm.v5.2 |
[27] | Jiang Siyi, Yang Sen, Sun Liangdan. Research progress on the mechanism of fibroblasts in skin aging[J]. Journal of Practical Dermatology, 2017, 10 (2) : 101-103. |
[28] | Li Tong. Analysis of microRNA expression profile related to skin and dermis aging and its validation in aging fibroblasts[D]. Shanghai: Fudan University, 2014. |
[29] |
Farage M A, Miller K W, Elsner P, et al. Characteristics of the aging skin[J]. Advances in Wound Care, 2013, 2 (1) : 5-10.
doi: 10.1089/wound.2011.0356 pmid: 24527317 |
[30] | Xiong Juan, Guan Yalin, Yang Yutong, et al. Application of stem cells to skin anti-aging[J]. Chinese Journal of Tissue Engineering Research, 2023, 27 (6) : 948-954. |
[31] |
Rodier F, Campisi J. Four faces of cellular senescence[J]. Journal of Cell Biology, 2011, 192 (4) : 547-556.
doi: 10.1083/jcb.201009094 pmid: 21321098 |
[32] |
Wang Y, Lauer M E, Anand S, et al. Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress[J]. Journal of Biological Chemistry, 2014, 289 (46) : 32253-32265.
doi: 10.1074/jbc.M114.578377 pmid: 25266724 |
[33] | Chacón-Martínez C A, Koester J, Wickström S A. Signaling in the stem cell niche: regulating cell fate, function and plasticity[J]. Development, 2018, 145 (15) : 1-11. |
[34] |
Watt F M, Frye M, Benitah S A. MYC In mammalian epidermis: how can an oncogene stimulate differentiation?[J]. Nat Rev Cancer, 2008, 8 (3) : 234-242.
doi: 10.1038/nrc2328 pmid: 18292777 |
[35] |
Watt F M. Epidermal stem cells: markers, patterning and the control of stem cell fate[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353 (1370) : 831-837.
doi: 10.1098/rstb.1998.0247 |
[36] | Watt F M, Celso C L, Silva-Vargas V. Epidermal stem cells: an update[J]. Current Opinion in Genetics & Development, 2006, 16 (5) : 518-524. |
[37] |
Jensen K B, Collins C A, Nascimento E, et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis[J]. Cell Stem Cell, 2009, 4 (5) : 427-439.
doi: 10.1016/j.stem.2009.04.014 pmid: 19427292 |
[38] |
Watt F M, Jensen K B. Epidermal stem cell diversity and quiescence[J]. EMBO Molecular Medicine, 2009, 1 (5) : 260-267.
doi: 10.1002/emmm.200900033 pmid: 20049729 |
[39] | Feng Faqing, Liu Youting, Dong Yinmao. Research progress on the action mechanism of cosmetic whitening agents[J]. Flavour Fragrance Cosmetics, 2019 (6) : 79-82. |
[40] |
Guo J, Zhang J F, Wang W M, et al. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression[J]. RNA Biology, 2014, 11 (6) : 732-741.
doi: 28865 pmid: 24824743 |
[41] |
Itoh T, Fukatani K, Nakashima A, et al. MicroRNA-141-3p and microRNA-200a-3p regulate α-melanocyte stimulating hormone-stimulated melanogenesis by directly targeting microphthalmia-associated transcription factor[J]. Scientific Reports, 2020, 10 (1) : 1-11.
doi: 10.1038/s41598-019-56847-4 |
[42] |
Kim N H, Choi S H, Kim C H, et al. Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target[J]. Journal of Investigative Dermatology, 2014, 134 (4) : 1075-1082.
doi: 10.1038/jid.2013.478 |
[43] | Zhang Yutong, Wei Mengya, Ren Qianqian, et al. Cosmetic plant materials (Ⅵ): Research and development in anti-aging cosmetics[J]. China Surfactant Detergent & Cosmetics, 2021, 51 (11) : 1053-1059. |
[44] |
Lan C C E, Wu C S, Huang S M, et al. Irradiance-dependent UVB photocarcinogenesis[J]. Scientific Reports, 2016, 6 (1) : 1-11.
doi: 10.1038/s41598-016-0001-8 |
[45] |
Moura Valejo Coelho M, Matos T R, Apetato M. The dark side of the light: mechanisms of photocarcinogenesis[J]. Clin Dermatol, 2016, 34 (5) : 563-570.
doi: 10.1016/j.clindermatol.2016.05.022 pmid: 27638434 |
[46] |
Jiang T, Huang Z, Lin Y, et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy[J]. Diabetes, 2010, 59 (4) : 850-860.
doi: 10.2337/db09-1342 pmid: 20103708 |
[47] | Zhou Bin. The role of DNA methylation in UVA induced chronic damage of skin embryonic fibroblasts[D]. Chongqing: Chongqing University, 2017. |
[48] | Chen I, Henning S, Faust A, et al. UVA-Induced epigenetic regulation of P16INK4a in human epidermal keratinocytes and skin tumor derived cells[J]. Photochemical & Photobiological Sciences, 2002, 1 (11) : 180-190. |
[49] | Guo Yiqi, Shi Dongyun, Wang Junhui, et al. SIRT Gene family and its regulation on cell life span[J]. Acta Biophysica Sinica, 2006, 22 (1) : 7-11. |
[50] | Li Xintong. Study on SIRT3 in HaCaT cell injury induced by UVB[D]. Dalian: Dalian Medical University, 2020. |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|