日用化学工业 ›› 2021, Vol. 51 ›› Issue (3): 178-185.doi: 10.3969/j.issn.1001-1803.2021.03.002
收稿日期:
2021-01-29
出版日期:
2021-03-22
发布日期:
2021-03-23
通讯作者:
金建明
作者简介:
任倩倩(1996-),女,河南人,E-mail:基金资助:
REN Qian-qian1,2(),WU Hua1,2,JIN Jian-ming1,2(
)
Received:
2021-01-29
Online:
2021-03-22
Published:
2021-03-23
Contact:
Jian-ming JIN
摘要:
黑色素是导致人类皮肤和头发色素沉着的主要因素。酪氨酸酶是黑色素生物合成途径的关键酶。其中抑制酪氨酸酶是减少皮肤黑色素产生的主要策略之一。文章介绍了黑色素的生物合成途径、蘑菇酪氨酸酶与人酪氨酸酶的区别、酪氨酸酶抑制机理以及抑制酪氨酸酶活性的植物提取物和单体成分。抑制酪氨酸酶活性的植物成分通常为含有苯环或酚羟基结构的化合物,主要包括对苯二酚类、苯甲醛和苯甲酸酯类、苯乙素类、苯丙素类、二苯乙烯类、黄酮、多酚和醌类化合物。并对一些植物成分的结构和酪氨酸酶抑制活性的相关性进行阐述,希望能为相关研究工作者提供帮助。
中图分类号:
任倩倩,吴华,金建明. 化妆品植物原料(Ⅱ)——抑制酪氨酸酶活性的植物美白原料的研究与开发[J]. 日用化学工业, 2021, 51(3): 178-185.
REN Qian-qian,WU Hua,JIN Jian-ming. Botanical cosmetic ingredient (Ⅱ)Research and development of tyrosinase inhibitors from plant extracts in skin whitening[J]. China Surfactant Detergent & Cosmetics, 2021, 51(3): 178-185.
表 1
一些抑制剂对蘑菇酪氨酸酶和人酪氨酸酶的活性比较"
抑制常数 | 抑制剂 | 对蘑菇酪氨酸酶的抑制值/(μmol·L-1) | 对人酪氨酸酶的抑制值/(μmol·L-1) | 参考文献 |
---|---|---|---|---|
Ki | 曲酸 | 4.3 | 350 | [12] |
苯甲酸 | 4.6 | 520 | [12] | |
1-氧代-2-羟基吡啶 | 1.8 | 128 | [13] | |
IC50 | 曲酸 | 6.0 | 500 | [14] |
对苯二酚 | 1.1 | 4 400 | [14] | |
β-熊果苷 | 40 | 6 500 | [14] | |
间苯二酚 | 652 | >3 000 | [14] | |
4-N-丁基间苯二酚 | 0.6 | 21 | [14] | |
4-己基间苯二酚 | 1.2 | 94 | [14] | |
二甲氧基甲苯基-4-丙基间苯二酚 | 0.24 | 无活性 | [14] | |
6,7-二羟基香豆素 | 4.3 | 无活性 | [12] |
[1] |
Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017,32(1) :403-425.
pmid: 28097901 |
[2] | Burnett C L, Bergfeld W F, Belsito D V, et al. Final report of the safety assessment of kojic acid as used in cosmetics[J]. International Journal of Toxicology, 2010,29(6) :187-213. |
[3] |
Sarkar R, Arora P, Garg K. Cosmeceuticals for hyperpigmentation: What is available?[J]. Journal of Cutaneous & Aesthetic Surgery, 2013,6(1) :4-11.
pmid: 23723597 |
[4] |
Nishioka E, Funasaka Y, Kondoh H, et al. Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B induced apoptosis[J]. Melanoma Research, 1999,9(5) :433-443.
pmid: 10596909 |
[5] | Halaban R, Patton R S, Cheng E, et al. Abnormal acidification of melanoma cells induces tyrosinase retention in the early secretory pathway[J]. Journal of Biological Chemistry, 2002,277(17) : 14821-14828. |
[6] | Sánchez-Ferrer Á, Rodríguez-López J N, García-Cánovas F, et al. Tyrosinase: a comprehensive review of its mechanism[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1995,1247(1) :1-11. |
[7] | Roulier B, Peres B, Haudecoeur R. Advances in the design of genuine human tyrosinase inhibitors for targeting melanogenesis and related pigmentations[J]. Journal of Medicinal Chemistry, 2020,63(22) :13428-13443. |
[8] |
Stefano F, Marcello C, Laura G, et al. Human tyrosinase produced in insect cells: a landmark for the screening of new drugs addressing its activity[J]. Molecular Biotechnology, 2015,57(1) :45-57.
doi: 10.1007/s12033-014-9800-y pmid: 25189462 |
[9] | Romain H, Marcello C, Aurélie G, et al. 2-Hydroxypyridine-N-oxide-embedded aurones as potent human tyrosinase inhibitors[J]. ACS Medicinal Chemistry Letters, 2017,8(1) :321-324. |
[10] | Mann T, Gerwat W, Batzer J, et al. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase[J]. Journal of Investigative Dermatology, 2018,138(7) :1601-1608. |
[11] |
Chang T S. An updated review of tyrosinase inhibitors[J]. International Journal of Molecular Sciences, 2009,10(6) :2440-2475.
doi: 10.3390/ijms10062440 pmid: 19582213 |
[12] |
Amer M, Metwalli M. Topical hydroquinone in the treatment of some hyperpigmentary disorders[J]. International Journal of Dermatology, 1998,37(6) :449-450.
pmid: 9646135 |
[13] |
Wester R C, Melendres J, Hui X, et al. Human in vivo and in vitro hydroquinone topical bioavailability, metabolism, and disposition[J]. Journal of Toxicology and Environmental Health Part A, 1998,54(4) :301-317.
pmid: 9638901 |
[14] | Parvez S, Kang M, Chung H S, et al. Survey and mechanism of skin depigmenting and lightening agents[J]. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2006,20(11) :921-934. |
[15] |
Ding H Y, Lin H C, Chang T S. Tyrosinase inhibitors isolated from the roots of Paeonia suffruticosa[J]. Journal of Cosmetic Science, 2009,60(3) :347-352.
pmid: 19586602 |
[16] |
Lee H S. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials[J]. Journal of Agricultural and Food Chemistry, 2002,50(6) : 1400-1403.
doi: 10.1021/jf011230f pmid: 11879010 |
[17] |
Jiménez M, Chazarra S, Escribano J, et al. Competitive inhibition of mushroom tyrosinase by 4-substituted benzaldehydes[J]. Journal of Agricultural & Food Chemistry, 2001,49(8) : 4060-4063.
pmid: 11513710 |
[18] |
Kubo I, Kinst-Hori I. 2-Hydroxy-4-methoxybenzaldehyde: a potent tyrosinase inhibitor from African medicinal plants[J]. Planta Medica, 1999,65(1) : 19-22.
pmid: 10083839 |
[19] |
Iwai K, Kishimoto N, Kakino Y, et al. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans[J]. Journal of Agricultural & Food Chemistry, 2004,52(15) : 4893.
pmid: 15264931 |
[20] |
Miyazawa M, Oshima T, Koshio K, et al. Tyrosinase inhibitor from black rice bran[J]. Journal of Agricultural & Food Chemistry, 2003,51(24) :6953-6956.
pmid: 14611153 |
[21] | Chang H M, Chen Y C, Wu C H, et al. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway[J]. Food and Chemical Toxicology, 2014,65(1) :129-139. |
[22] |
Ding H Y, Chang T S, Shen H C, et al. Murine tyrosinase inhibitors from Cynanchum bungei and evaluation of in vitro and in vivo depigmenting activity[J]. Experimental Dermatology, 2011,20(9) :720-724.
doi: 10.1111/j.1600-0625.2011.01302.x pmid: 21615508 |
[23] |
An S M, Koh J S, Boo Y C. p‐coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB[J]. Phytotherapy Research, 2010,24(8) :1175-1180.
doi: 10.1002/ptr.3095 pmid: 20077437 |
[24] | Lee H S, Shin K H, Ryu G S, et al. Synjournal of small molecule-peptide conjugates as potential whitening agents[J]. Bulletin of the Korean Chemical Society, 2012,33(9) :3004-3008. |
[25] | Kanlayavattanakul M, Lourith N, Chaikul P. Jasmine rice panicle: a safe and efficient natural ingredient for skin aging treatments[J]. Journal of Ethnopharmacology, 2016,193(2) :607-616. |
[26] |
Roh J S, Han J Y, Kim J H, et al. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis[J]. Biological and Pharmaceutical Bulletin, 2004,27(12) : 1976-1978.
doi: 10.1248/bpb.27.1976 pmid: 15577216 |
[27] |
Piao X L, Baek S H, Park M K, et al. Tyrosinase-inhibitory furanocoumarin from Angelica dahurica[J]. Biological & Pharmaceutical Bulletin, 2004,27(7) :1144-1146.
doi: 10.1248/bpb.27.1144 pmid: 15256758 |
[28] |
Kim M, Park J, Song K, et al. Screening of plant extracts for human tyrosinase inhibiting effects[J]. International Journal of Cosmetic Science, 2012,34(2) :202-208.
doi: 10.1111/j.1468-2494.2012.00704.x |
[29] |
Azhar U L H, Malik A, Khan M T H, et al. Tyrosinase inhibitory lignans from the methanol extract of the roots of Vitex negundo Linn. and their structure-activity relationship[J]. Phytomedicine, 2006,13(4) :255-260.
pmid: 16492528 |
[30] | Ohguchi K, Tanaka T, Ito T, et al. Inhibitory effects of resveratrol derivatives from dipterocarpaceae plants on tyrosinase activity[J]. Bioscience Biotechnology and Biochemistry, 2003,67(7) :1587-1589. |
[31] | Yokozawa T, Kim Y J. Piceatannol inhibits melanogenesis by its antioxidative actions[J]. Biological & Pharmaceutical Bulletin, 2007,30(11) :2007-2011. |
[32] |
Miyazawa M, Tamura N. Inhibitory compound of tyrosinase activity from the sprout of Polygonum hydropiper L. (Benitade)[J]. Biological & Pharmaceutical Bulletin, 2007,30(3) : 595-597.
pmid: 17329865 |
[33] |
Yokata T, Nishio H, Kubota Y, et al. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation[J]. Pigment Cell Research, 1998,11(6) :355-361.
doi: 10.1111/j.1600-0749.1998.tb00494.x pmid: 9870547 |
[34] | Masuda T, Yamashita D, Takeda Y, et al. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica[J]. Bioscience Biotechnology and Biochemistry, 2005,69(1) :197-201. |
[35] |
Nerya O, Vaya J, Musa R, et al. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots[J]. Journal of Agricultural and Food Chemistry, 2003,51(5) :1201-1207.
pmid: 12590456 |
[36] | Chen J, Li Q, Ye Y, et al. Phloretin as both a substrate and inhibitor of tyrosinase: inhibitory activity and mechanism[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020,226(1) :117642. |
[37] | Yang Z, Wang Y, Wang Y, et al. Bioassay-guided screening and isolation of α-glucosidase and tyrosinase inhibitors from leaves of Morus alba[J]. Food Chemistry, 2012,131(2) :617-625. |
[38] |
Chang L W, Juang L J, Wang B S, et al. Antioxidant and antityrosinase activity of mulberry (Morus alba L.) twigs and root bark[J]. Food and Chemical Toxicology, 2011,49(4) :785-790.
pmid: 21130832 |
[39] |
Lee S H, Choi S Y, Kim H, et al. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynjournal[J]. Biological & Pharmaceutical Bulletin, 2002,25(8) :1045-1048.
doi: 10.1248/bpb.25.1045 pmid: 12186407 |
[40] | Wang S, Liu X M, Zhang J, et al. An efficient preparation of mulberroside A from the branch bark of mulberry and its effect on the inhibition of tyrosinase activity[J]. PloS One, 2014,9(10) :109396. |
[41] |
Chen Y S, Lee S M, Lin C C, et al. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L[J]. Journal of Bioscience and Bioengineering, 2013,115(3) :242-245.
doi: 10.1016/j.jbiosc.2012.09.013 pmid: 23063243 |
[42] | Kim J H, Baek S H, Kim D H, et al. Downregulation of melanin synjournal by haginin A and its application to in vivo lightening model[J]. Journal of Investigative Dermatology, 2008,128(5) :1227-1235. |
[43] |
Kim S J, Son K H, Chang H W, et al. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens[J]. Biological & Pharmaceutical Bulletin, 2003,26(9) :1348-1350.
pmid: 12951485 |
[44] |
Hyun S K, Lee W H, Jeong D M, et al. Inhibitory effects of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synjournal[J]. Biological & Pharmaceutical Bulletin, 2008,31(1) :154-158.
pmid: 18175961 |
[45] |
Wang Y, Curtis-Long M, Lee B Y, et al. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots[J]. Bioorganic & Medicinal Chemistry, 2014,22(3) :1115-1120.
pmid: 24412339 |
[46] | No J K, Kim Y J, Shim K H, et al. Inhibition of tyrosinase by green tea components[J]. Life Sciences, 1999,65(21) :241-246. |
[47] | Liang C H, Chou T H, Ding H Y. Inhibition of melanogensis by a novel origanoside from Origanum vulgare[J]. Journal of Dermatological Science, 2010,57(3) :170-177. |
[48] |
Wangthong S, Palaga T, Rengpipat S, et al. Biological activities and safety of Thanaka (Hesperethusa crenulata) stem bark[J]. Journal of Ethnopharmacology, 2010,132(2) :466-472.
pmid: 20804839 |
[49] |
Kim J H, Yoon J Y, Yang S Y, et al. Tyrosinase inhibitory components from Aloe vera and their antiviral activity[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017,32(1) :78-83.
doi: 10.1080/14756366.2016.1235568 pmid: 27778516 |
[50] |
Jin Y H, Lee S J, Chung M H, et al. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism[J]. Archives of Pharmacal Research, 1999,22(3) :232-236.
doi: 10.1007/BF02976355 pmid: 10403123 |
[51] | Lu Y J, Wang Q, Jiang M, et al. Screening of effective components for inhibition of tyrosinase activity in rhubarb based on spectrum-efficiency-structure-activity relationship[J]. Chinese Traditional and Herbal Drugs, 2012,43(11) :2120-2126. |
[52] |
Leu Y L, Hwang T L, Hu J W, et al. Anthraquinones from Polygonum cuspidatum as tyrosinase inhibitors for dermal use[J]. Phytotherapy Research, 2008,22(4) :552-556.
doi: 10.1002/ptr.2324 pmid: 18338768 |
[53] |
Devkota K P, Khan M T H, Ranjit R, et al. Tyrosinase inhibitory and antileishmanial constituents from the rhizomes of Paris polyphylla[J]. Natural Product Research, 2007,21(4) :321-327.
doi: 10.1080/14786410701192777 pmid: 17479420 |
[54] |
Yoshimori A, Oyama T, Takahashi S, et al. Structure-activity relationships of the thujaplicins for inhibition of human tyrosinase[J]. Bioorganic & Medicinal Chemistry, 2014,22(21) :6193-6200.
pmid: 25288494 |
[55] |
Sultankhodzhaev M N, Khan M T H, Moin M, et al. Tyrosinase inhibition studies of diterpenoid alkaloids and their derivatives: structure-activity relationships[J]. Natural Product Research, 2005,19(5) :517-522.
doi: 10.1080/14786410512331330585 pmid: 15938198 |
[56] |
Ullah F, Hussain H, Hussain J, et al. Tyrosinase inhibitory pentacyclic triterpenes and analgesic and spasmolytic activities of methanol extracts of Rhododendron collettianum[J]. Phytotherapy Research, 2007,21(11) :1076-1081.
doi: 10.1002/ptr.2216 pmid: 17661331 |
[57] | Sabudak T, Khan M T H, Choudhary M I, et al. Potent tyrosinase inhibitors from Trifolium balansae[J]. Natural Product Research, 2006,20(7) :665-670. |
[58] |
Khan S B, Azhar-ul-Haq , Afza N, et al. Tyrosinase-inhibitory long-chain esters from Amberboa ramosa[J]. Chemical & Pharmaceutical Bulletin, 2005,53(1) :86-89.
doi: 10.1248/cpb.53.86 pmid: 15635236 |
[59] |
Wang H M, Chen C Y, Chen C Y, et al. (-)-N-Formylanonaine from Michelia alba as a human tyrosinase inhibitor and antioxidant[J]. Bioorganic & Medicinal Chemistry, 2010,18(14) :5241-5247.
pmid: 20584613 |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 王雪娇, 杜丽娟, 徐元喜. 液体洗涤蛋白酶稳定剂筛选方法开发[J]. 日用化学工业(中英文), 2023, 53(7): 796-801. |
[3] | 张艳萍, 周宗洲, 黄婉锋, 陈艺华, 张敏, 何作民. UPLC-MS/MS法测定化妆品常用植物提取物中16种香豆素类化合物[J]. 日用化学工业(中英文), 2023, 53(2): 226-232. |
[4] | 潘继飞, 王晓娜, 郭海姣, 杨素珍, 陈建英. 5α-还原酶抑制剂体外评价体系的建立及其应用[J]. 日用化学工业(中英文), 2023, 53(11): 1280-1284. |
[5] | 王强,尚佳伟,陆优,陆荣柱. 植物提取物防脱生发机制研究进展[J]. 日用化学工业, 2021, 51(9): 897-902. |
[6] | 任倩倩,孙旭,吴华,金建明. 化妆品植物原料(V)——抗氧化活性的植物原料的研究与开发[J]. 日用化学工业, 2021, 51(9): 817-824. |
[7] | 任倩倩,吴华,金建明. 化妆品植物原料(IV)——抑制黑色素合成信号通路的植物美白原料的研究与开发[J]. 日用化学工业, 2021, 51(7): 590-597. |
[8] | 张雨彤,宋阳,吴华,金建明. 化妆品植物原料(Ⅲ)——在保湿化妆品中的研究与开发[J]. 日用化学工业, 2021, 51(5): 383-389. |
[9] | 张雨彤,魏梦雅,任倩倩,吴华,金建明. 化妆品植物原料(VI)——在抗衰老化妆品中的研究与开发[J]. 日用化学工业, 2021, 51(11): 1052-1059. |
[10] | 任倩倩,孙旭,李楠,吴华,金建明. 化妆品植物原料(I)——在防晒化妆品中的研究与开发[J]. 日用化学工业, 2021, 51(1): 10-16. |
[11] | 郑曦,陈智多,张德蒙,秦益民,易彩霞,黄啸. 海藻酸钠对酪氨酸酶的抑制作用[J]. 日用化学工业, 2019, 49(6): 388-392. |
[12] | 郝谜谜, 王艳, 刘园园, 鲍炎, 李红艳, 郑琳. 苯乙基间苯二酚抑制黑色素形成的机理研究[J]. 日用化学工业, 2018, 48(5): 293-298. |
[13] | 赵华, 王楠. 化妆品功效评价(Ⅲ)——美白功效宣称的科学支持[J]. 日用化学工业, 2018, 48(3): 129-133. |
[14] | 万禁禁, 刘瑞学, 冷群英, 陈效芳. 一种美白霜的研制及其美白功效评价[J]. 日用化学工业, 2017, 47(9): 512-516. |
[15] | 孙劲毅, 蔡春辉, 梁蓉, 杨成. 茶皂素的纯化及抑制酪氨酸酶活性的研究[J]. 日用化学工业, 2017, 47(6): 312-316. |
|