日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (7): 866-872.doi: 10.3969/j.issn.2097-2806.2024.07.015
贾雪丽1,祖姆热提·艾孜则1,毕永贤2,何聪芬1,唐萌2,董坤1,*()
收稿日期:
2023-06-03
修回日期:
2024-06-24
出版日期:
2024-07-22
发布日期:
2024-07-26
Xueli Jia1,Zumrat Aziz1,Yongxian Bi2,Congfen He1,Meng Tang2,Kun Dong1,*()
Received:
2023-06-03
Revised:
2024-06-24
Online:
2024-07-22
Published:
2024-07-26
Contact:
*E-mail: dongkun@btbu.edu.cn.
摘要:
目前体外评价抗氧化活性方法在食品、医药和化妆品等领域广泛应用,但没有一种方法可真实准确反映抗氧化剂的“总抗氧化能力”,每种检测方法都存在一定缺点和局限性。DPPH法和ABTS法因快速、简单、成本低、可检测大量样本等优点,被广泛接受并使用,但不同抗氧化剂溶剂、结构、浓度和空间可及性、吸收信号、反应时间等因素对测定结果准确性存在影响。本研究依据影响DPPH法和ABTS法检测准确性的不同因素分析发现,DPPH法更适合评价以有机溶剂为反应溶剂、非极性/极性较小、反应较慢的抗氧化剂,且容易受到抗氧化剂颜色的影响,如色素;光照、金属离子、pH值波动也会影响DPPH法的稳定性。ABTS法更适合评价以水为反应溶剂、极性较大、反应迅速的抗氧化剂。因此,为准确测定抗氧化剂活性,应依据样品特征选择适合方法,同时建议使用至少两种或以上方法,以全面反映抗氧化剂活性。
中图分类号:
贾雪丽, 祖姆热提·艾孜则, 毕永贤, 何聪芬, 唐萌, 董坤. 两种体外评价抗氧化活性方法影响因素分析:DPPH和ABTS[J]. 日用化学工业(中英文), 2024, 54(7): 866-872.
Xueli Jia, Zumrat Aziz, Yongxian Bi, Congfen He, Meng Tang, Kun Dong. Influence factors analysis of two methods for evaluating antioxidant activity in vitro: DPPH and ABTS assays[J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 866-872.
[1] | Mailloux R J. An update on mitochondrial reactive oxygen species production[J]. Antioxidants, 2020, 9 (6) : 472. |
[2] | Ketnawa S, Jr F C R, Sukanya T, et al. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62 (17) : 4684-4705. |
[3] | Speer H, D’cunha N M, Alexopoulos N I, et al. Anthocyanins and human health—A focus on oxidative stress, inflammation and disease[J]. Antioxidants, 2020, 9 (5) : 366. |
[4] | Chen X, Kitts D D, Ji D, et al. Free radical scavenging activities of phytochemical mixtures and aqueous methanolic extracts recovered from processed coffee leaves[J]. International Journal of Food Science & Technology, 2019, 54 (10) : 2872-2879. |
[5] | Poljsak B, Kova V, Milisav I. Antioxidants, food processing and health[J]. Antioxidants, 2021, 10 (3) : 433. |
[6] | Lourenço S C, Moldăo-martins M, Alves V D. Antioxidants of natural plant origins: From sources to food industry applications[J]. Molecules, 2019, 24 (22) : 4132. |
[7] | Munteanu I G, Apetrei C. Analytical methods used in determining antioxidant activity: A review[J]. International Journal of Molecular Sciences, 2021, 22 (7) : 3380. |
[8] |
Amorati R, Valgimigli L. Methods to measure the antioxidant activity of phytochemicals and plant extracts[J]. Journal of Agricultural and Food Chemistry, 2018, 66 (13) : 3324-3329.
doi: 10.1021/acs.jafc.8b01079 pmid: 29557653 |
[9] | Romulo A. The principle of some in vitro antioxidant activity methods[J]. Earth and Environmental Science, 2020, 426 (1). DOI: 10.1088/1755-1315/426/1/012177. |
[10] |
Apak R, Özyürek M, Güçlü K, et al. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays[J]. Journal of Agricultural and Food Chemistry, 2016, 64 (5) : 997-1027.
doi: 10.1021/acs.jafc.5b04739 pmid: 26728425 |
[11] | Li X. Comparative study of 1, 1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging capacity of the antioxidant xanthones family[J]. ChemistrySelect, 2018, 3. |
[12] | Li X, Ouyang X, Cai R, et al. 3′,8″-Dimerization enhances the antioxidant capacity of flavonoids: evidence from acacetin and isoginkgetin[J]. Molecules, 2019, 24 (11) : 2039. |
[13] | Schaich K, Tian X, Xie J. Reprint of “Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays”[J]. Journal of Functional Foods, 2015, 18: 782-796. |
[14] |
Tian X, Schaich K. Effects of molecular structure on kinetics and dynamics of the trolox equivalent antioxidant capacity assay with ABTS·+[J]. Journal of Agricultural and Food Chemistry, 2013, 61 (23) : 5511-5519.
doi: 10.1021/jf4010725 pmid: 23659464 |
[15] | Platzer M, Kiese S, Herfellner T, et al. Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays[J]. Molecules, 2021, 26 (5) : 1244. |
[16] |
La J, Kim M J, Lee J. Evaluation of solvent effects on the DPPH reactivity for determining the antioxidant activity in oil matrix[J]. Food Science and Biotechnology, 2021, 30: 367-375.
doi: 10.1007/s10068-020-00874-9 pmid: 33868747 |
[17] | Shojaee M S, Moeenfard M, Farhoosh R. Kinetics and stoichiometry of gallic acid and methyl gallate in scavenging DPPH radical as affected by the reaction solvent[J]. Scientific Reports, 2022, 12 (1) : 8765. |
[18] | Staško A, Brezová V, Biskupič S, et al. The potential pitfalls of using 1, 1-diphenyl-2-picrylhydrazyl to characterize antioxidants in mixed water solvents[J]. Free Radical Research, 2007, 41 (4) : 379-390. |
[19] | Al-temimi A, Choudhary R. Determination of antioxidant activity in different kinds of plants in vivo and in vitro by using diverse technical methods[J]. Nutrition & Food Sciences, 2013, 3 (1). DOI: 10.4172/2155-9600.1000184. |
[20] | Martinez-morales F, Alonso-castro A J, Zapata-morales J R, et al. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants[J]. Chemical Papers, 2020, 74: 3325-3334. |
[21] | Christodouleas D C, Fotakis C, Nikokavoura A, et al. Modified DPPH and ABTS assays to assess the antioxidant profile of untreated oils[J]. Food Analytical Methods, 2014, 8 (5) : 1-9. |
[22] | Ilyasov I R, Beloborodov V L, Selivanova I A, et al. ABTS/PP decolorization assay of antioxidant capacity reaction pathways[J]. International Journal of Molecular Sciences, 2020, 21 (3) : 1131. |
[23] | Yolanda del Rocio Moreno-Ramĭrez, Aurelio Hernández-Bautista, Pedro A. López, et al. Variability in the phytochemical contents and free radical-scavenging capacity of capsicum annuum var. glabriusculum (Wild Piquin Chili)[J]. Chemistry & Biodiversity, 2019, 16 (10) : e1900381. |
[24] |
Xie J, Schaich K. Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity[J]. Journal of Agricultural and Food Chemistry, 2014, 62 (19) : 4251-4260.
doi: 10.1021/jf500180u pmid: 24738928 |
[25] |
Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants?[J]. Plant Physiology and Biochemistry, 2019, 144: 135-143.
doi: S0981-9428(19)30383-3 pmid: 31563754 |
[26] | Hasbullah U H A, Umiyati D R. Antioxidant activity and total phenolic compounds of arabica and robusta coffee at different roasting levels[J]. Journal of Physics: Conference Series, 2021, 1764 (1), 12-33. |
[27] | Balasundram N, Sundram ksamman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses[J]. Food Chemistry, 2006, 99 (1) : 191-203. |
[28] | Nenadis N, Wang L F, Tsimidou M, et al. Estimation of scavenging activity of phenolic compounds using the ABTS·+assay[J]. Journal of Agricultural and Food Chemistry, 2004, 52 (15) : 4669-4674. |
[29] |
Liang N, Kitts D D. Antioxidant property of coffee components: assessment of methods that define mechanisms of action[J]. Molecules, 2014, 19 (11) : 19180-19208.
doi: 10.3390/molecules191119180 pmid: 25415479 |
[30] | Wołosiak R, Drużyǹska B, Derewiaka D, et al. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays—A practical approach[J]. Molecules, 2022, 27 (1) : 50. |
[31] | Rumpf J, Burger R, Schulze M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins[J]. Int. J. Biol. Macromol., 2023. https://doi.org/10.1016/j.ijbiomac.2023.123470. |
[32] | Takatsuka M, Goto S, Kobayashi K, et al. Evaluation of pure antioxidative capacity of antioxidants: ESR spectroscopy of stable radicals by DPPH and ABTS assays with singular value decomposition[J]. Food Bioscience, 2022, 48: 101714. |
[33] | Salamone M, Dilabio G A, Bietti M. Hydrogen atom abstraction reactions from tertiary amines by benzyloxyl and cumyloxyl radicals: influence of structure on the rate-determining formation of a hydrogen-bonded prereaction complex[J]. The Journal of Organic Chemistry, 2011, 76 (15) : 6264-6270. |
[34] | Salamone M, Martella R, Bietti M. Hydrogen abstraction from cyclic amines by the cumyloxyl and benzyloxyl radicals. The role of stereoelectronic effects and of substrate/radical hydrogen bonding[J]. The Journal of Organic Chemistry, 2012, 77 (19) : 8556-8561. |
[35] | Vinci G, D’ascenzo F, Maddaloni L, et al. The influence of green and black tea infusion parameters on total polyphenol content and antioxidant activity by ABTS and DPPH assays[J]. Beverages, 2022, 8 (2) : 18. |
[36] | Untea A, Lupu A, Saracila M, et al. Comparison of ABTS, DPPH, phosphomolybdenum assays for estimating antioxidant activity and phenolic compounds in five different plant extracts[J]. Bulletin UASVM Animal Science and Biotechnologies, 2018, 75 (2) : 111-114. |
[37] |
Xiang J, Apea-bah F B, Ndolo V U, et al. Profile of phenolic compounds and antioxidant activity of finger millet varieties[J]. Food Chemistry, 2019, 275: 361-368.
doi: S0308-8146(18)31691-1 pmid: 30724208 |
[38] | Bal A, Pati S G, Panda F, et al. Modification of the time of incubation in colorimetric method for accurate determination of the total antioxidants capacity using 2, 2-diphenyl-1-picrylhydrazyl stable free radical[J]. Journal of Applied Biology and Biotechnology, 2021, 9 (4) : 156-161. |
[39] | Mishra K, Ojha H, Chaudhury N K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results[J]. Food Chemistry, 2012, 130 (4) : 1036-1043. |
[40] | Qiang Yu, Zhang Yaozong, Yu Bo, et al. Applicability of ABTS and DPPH methods for detrmination of free radical scawenging ability of carotenoids[J]. Journalof Nanchang University(Natural Science), 2019, 43 (6) : 7. |
[41] | Mo Jingchi, Li Xiaofen, Xiong Huabin, et al. UV-Vis absorption spectrometric investigation of the astaxanthin against ABTS free radicals[J]. The Food Industry, 2018, 39 (3) : 94-97. |
[42] | Bobková A, Hudáček M, Jakabová S, et al. The effect of roasting on the total polyphenols and antioxidant activity of coffee[J]. Journal of Environmental Science and Health, Part B, 2020, 55 (5) : 495-500. |
[43] | Sharma O P, Bhat T K. DPPH antioxidant assay revisited[J]. Food Chemistry, 2009, 113 (4) : 1202-1205. |
[44] | Floegel A, Kim D O, Chung S J, et al. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods[J]. Journal of Food Composition and Analysis, 2011, 24 (7) : 1043-1048. |
[45] | Praybylski P, Konopko A, Łętowski P, et al. Concentration-dependent HAT/ET mechanism of the reaction of phenols with 2, 2-diphenyl-1-picrylhydrazyl (dpph) in methanol[J]. RSC Advances, 2022, 12 (13) : 8131-8136. |
[46] |
Waki T, Kobayashi S, Matsumoto K I, et al. Effects of ionic radius of redox-inactive bio-related metal ions on the radical-scavenging activity of flavonoids evaluated using photometric titration[J]. Chemical Communications, 2013, 49 (84) : 9842-9844.
doi: 10.1039/c3cc45124k pmid: 24030811 |
[47] |
Sak K. Dependence of DPPH radical scavenging activity of dietary flavonoid quercetin on reaction environment[J]. Mini Reviews in Medicinal Chemistry, 2014, 14 (6) : 494-504.
pmid: 24958220 |
[48] | Özkök A, Keskin M, Tanuğur S A E, et al. Determination of antioxidant activity and phenolic compounds for basic standardization of Turkish propolis[J]. Applied Biological Chemistry, 2021, 64 (1) : 1-10. |
[49] |
Villaño D, Fernández-pachón M, Moyá M L, et al. Radical scavenging ability of polyphenolic compounds towards DPPH free radical[J]. Talanta, 2007, 71 (1) : 230-235.
doi: 10.1016/j.talanta.2006.03.050 pmid: 19071293 |
[50] | Kidoń M, Grabowska J. Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods[J]. LWT-Food Science & Technology, 2021, 136: 110-302. |
[51] |
Del C M D, Ames J M, Gordon M H. Effect of roasting on the antioxidant activity of coffee brews[J]. Journal of Agricultural and Food Chemistry, 2002, 50 (13) : 3698-3703.
pmid: 12059145 |
[52] |
Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology and Medicine, 1999, 26(9-10): 1231-1237.
doi: 10.1016/s0891-5849(98)00315-3 pmid: 10381194 |
[1] | 汪磊, 田君. C-O官能团修饰的CaMoO4光催化剂的合成与光催化活性研究[J]. 日用化学工业(中英文), 2024, 54(6): 669-676. |
[2] | 李健, 邓建明, 黄源城, 余敏, 王光丽, 王靖. 黑茶籽油成分分析及其对于H2O2诱导HFF-1细胞氧化损伤的保护作用[J]. 日用化学工业(中英文), 2024, 54(4): 393-400. |
[3] | 陈丽媛, 高合意, 唐金晶, 刘作华, 刘仁龙. 锰化合物抗氧化及保护头发光损伤功效评价[J]. 日用化学工业(中英文), 2023, 53(9): 1044-1050. |
[4] | 安瑞,赵庆. 水溶液中三氯生的吸附研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 945-953. |
[5] | 郭芳钰, 韩婷婷, 王晓娜, 陈玉荣, 王晓梅, 杨素珍. 中药双向发酵液制备及其抗衰老、保湿、美白功效研究[J]. 日用化学工业(中英文), 2023, 53(5): 523-531. |
[6] | 查雨锋,黄加文,詹易,李婷,颜宏,吴德松. 白梅花提取物抗氧化及美白功效评价[J]. 日用化学工业, 2022, 52(2): 172-179. |
[7] | 任倩倩,孙旭,吴华,金建明. 化妆品植物原料(V)——抗氧化活性的植物原料的研究与开发[J]. 日用化学工业, 2021, 51(9): 817-824. |
[8] | 张雨彤,魏梦雅,任倩倩,吴华,金建明. 化妆品植物原料(VI)——在抗衰老化妆品中的研究与开发[J]. 日用化学工业, 2021, 51(11): 1052-1059. |
[9] | 罗天骥,梅子坤,宋京九,祝钧. 异阿魏酸酰胺类衍生物的合成及其美白活性的研究[J]. 日用化学工业, 2021, 51(11): 1102-1108. |
[10] | 张倩洁,沈兴亮,张婉萍. 超细珍珠粉制备Pickering乳液的影响因素研究[J]. 日用化学工业, 2021, 51(1): 1-9. |
[11] | 郭晓丹,宋京九,祝钧. 阿魏酰氨基酸乙酯的合成及其抗氧化活性研究[J]. 日用化学工业, 2020, 50(9): 624-628. |
[12] | 康万利,王芳,杨红斌,朱彤宇,Bauyrzhan Sarsenbekuly. 两亲聚合物设计合成及其增效体系研究(VIII)—— 剪切降解与恢复特性[J]. 日用化学工业, 2020, 50(8): 516-522. |
[13] | 陈邈,李黎仙,孔祥烨,高鹰,杨亚玲. 浊点萃取-高效液相色谱法检测化妆品中4种合成酚类抗氧化剂[J]. 日用化学工业, 2020, 50(7): 504-508. |
[14] | 康万利,谢安清,周博博,王芳,张向锋,杨红斌. 两亲聚合物设计合成及其增效体系研究(Ⅱ)— 两亲聚合物的合成理论与方法[J]. 日用化学工业, 2020, 50(2): 86-91. |
[15] | 杨红斌,康万利,李哲,Bauyrzhan Sarsenbekuly,蒋海壮,王嘉林. 两亲聚合物设计合成及其增效体系研究(XI)——两亲聚合物凝胶[J]. 日用化学工业, 2020, 50(11): 743-748. |
|