日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (5): 588-595.doi: 10.3969/j.issn.2097-2806.2024.05.013
陈琼1,2,张铮1,2,3,苏哲3,王钢力3,涂家生1,2,*(),孙春萌1,2,*(
)
收稿日期:
2023-04-25
修回日期:
2024-04-27
出版日期:
2024-05-22
发布日期:
2024-05-21
基金资助:
Qiong Chen1,2,Zheng Zhang1,2,3,Zhe Su3,Gangli Wang3,Jiasheng Tu1,2,*(),Chunmeng Sun1,2,*(
)
Received:
2023-04-25
Revised:
2024-04-27
Online:
2024-05-22
Published:
2024-05-21
Contact:
*E-mail: 摘要:
随着纳米技术的发展,化妆品产业中纳米原料的应用也愈加广泛。文章基于欧盟法规中收录的化妆品纳米原料,结合欧盟消费者安全委员会(SCCS)的评估工作,重点总结了三联苯基三嗪、氧化锌、炭黑、二氧化钛、亚甲基双-苯并三唑基四甲基丁基酚等5种化妆品纳米原料的基本信息,梳理了其主要理化性质的一般表征方法及限度要求。进一步调研与化妆品纳米原料具有显著相关性的理化性质,以期明确影响化妆品纳米原料质量的关键物料属性,为相关产品的质量控制提供有益帮助。
中图分类号:
陈琼, 张铮, 苏哲, 王钢力, 涂家生, 孙春萌. 化妆品纳米原料物料属性及其功效相关性[J]. 日用化学工业(中英文), 2024, 54(5): 588-595.
Qiong Chen, Zheng Zhang, Zhe Su, Gangli Wang, Jiasheng Tu, Chunmeng Sun. Correlation of cosmetic nanomaterials attributes and their efficacy[J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 588-595.
表1
5种化妆品纳米原料的物理化学性质表征方法和限度要求"
纳米原料名称 | 物理化学 性质 | 表征方法 | 限度要求 |
---|---|---|---|
三联苯基三嗪 | 纯度和杂质,颗粒尺寸,均匀性和稳定性,紫外吸收 | 高效液相色谱(High Performance Liquid Chromatography,HPLC),液相色谱-质谱联用(Liquid Chromatography Coupled with Mass Spectrometry,LC-MS),扫描电子显微镜(Scanning Electron Microscopy,SEM),紫外-可见分光光度法(Ultraviolet-Visible Spectroscopy,UV-vis) | 初级粒子中值粒径>80 nm;纯度≥98%;无涂层 |
氧化锌 | 溶解度,颗粒尺寸,晶体结构,均匀性和稳定性,Zeta电位,紫外吸收 | 电感耦合等离子质谱(Inductively Coupled Plasma Mass Spectrometry,ICP-MS),原子吸收光谱法(Atomic Absorption Spectroscopy,AAS),动态光散射(Dynamic Light Scattering,DLS),透射电子显微镜(Transmission Electron Microscopy,TEM),扫描电子显微镜(Scanning Electron Microscopy,SEM),X射线衍射法(X-Ray Diffraction,XRD),紫外-可见分光光度法(Ultraviolet-Visible Spectroscopy,UV-vis),激光多普勒电泳法(Laser Doppler Electrophoresis,LDE) | 纯度≥96%,具有纤锌矿结构,外观呈棒状、星状和/或等距形状的团块,杂质仅包括二氧化碳和水,任何其他杂质的总量<1%;颗粒数量分布的中值粒径D50(小于此粒径的颗粒数量为50%)>30 nm,D1(小于于此粒径的颗粒数量为1%)>20 nm;水溶性<50 mg/L;无涂层或三乙氧基丙烯酰硅烷、聚二甲基硅氧烷、二甲氧基二苯基硅烷-三乙氧基丙烯酰硅烷交联聚合物或辛基三乙氧基硅烷涂层 |
炭黑 | 颗粒尺寸 | 动态光散射(Dynamic Light Scattering,DLS),静态光散射(Static Light Scattering,SLS),透射电子显微镜(Transmission Electron Microscopy,TEM) | 纯度>97%,杂质情况如下:灰分含量≤0.15%,总硫≤0.65%,总多环芳烃≤500 μg/kg,苯并(a)芘≤5 μg/kg,二苯并(a, h)蒽≤5 μg/kg,总砷≤3 mg/kg,总铅≤10 mg/kg,以及总汞≤1 mg/kg;初级粒子尺寸≥20 nm |
二氧化钛 | 颗粒尺寸,晶体结构,紫外吸收 | 差分离心沉降法(Differential Sedimentation Analysis,DCS),整体沉降分析(Integral Sedimentation Analysis),动态光散射(Dynamic Light Scattering,DLS),透射电子显微镜(Transmission Electron Microscopy,TEM),X射线衍射法(X-Ray Diffraction,XRD),紫外-可见分光光度法(Ultraviolet-Visible Spectroscopy,UV-vis) | 纯度≥99%;金红石型或金红石中含有5%的锐钛矿,外观为球形、针形或披针形的团块,基于数量分布的中值粒径≥30 nm,长宽比为1~4.5,体积比表面积≤460 m2/cm3;二氧化硅、水合二氧化硅、氧化铝、氢氧化铝、硬脂酸铝、硬脂酸、三甲氧基丙烯基硅烷、甘油、聚二甲基硅氧烷、氢聚二甲基硅氧烷、硅氧烷涂层;与相应的无涂层或无掺杂的材料相比,光催化活性≤10%,在最终配方中具有光稳定性 |
亚甲基双-苯并三唑基四甲基丁基酚 | 纯度和杂质,颗粒尺寸,均匀性和稳定性,Zeta电位,紫外吸收 | 高效液相色谱仪-二级管阵列检测(High Performance Liquid Chromatography with Diode Array Detector,HPLC-DAD),液相色谱-质谱联用(Liquid Chromatography-Mass Spectrometry,LC-MS),热脱附结合气相色谱-质谱联用(Thermal Desorption coupled with Gas Chromatography-Mass Spectrometry,TD-GC-MS),电感耦合等离子体发射光谱法(Inductively Coupled Plasma Optical Emission Spectrometer,ICP-OES),光纤准光弹性散射技术(Fiber-Optic Quasi-Elastic Light Scattering,FOQELS),扫描电子显微镜(Scanning Electron Microscopy,SEM),高效液相色谱-紫外检测(High Performance Liquid Chromatography with UV Detection,HPLC-UV),电声光谱系统(Electroacoustic Spectroscopy),紫外-可见分光光度法(Ultraviolet-Visible Spectroscopy,UV-vis) | 纯度≥98.5%,其中2,2’-亚甲基双-(6(2H-苯并三唑-2-基)-4-(异辛基)苯酚)异构体不超过1.5%;25 ℃时水中溶解度<5 ng/L;分配系数(Log Pow):25 ℃时为12.7;无涂层;中值粒径D50(小于该粒径的颗粒占50%):质量分布≥120 nm和/或数量分布≥60 nm |
[1] |
Raj S, Jose S, Sumod U S, et al. Nanotechnology in cosmetics: Opportunities and challenges[J]. J Pharm Bioallied Sci, 2012, 4 (3) : 186-193.
doi: 10.4103/0975-7406.99016 pmid: 22923959 |
[2] | Ferraris C, Rimicci C, Garelli S, et al. Nanosystems in cosmetic products: a brief overview of functional, market, regulatory and safety concerns[J]. Pharmaceutics, 2021, 13 (9) : 1408. |
[3] | SCCS. Guidance on the safety assessment of nanomaterials in cosmetics[EB/OL]. (2019-10-31) [2023-04-26]. https://ec.europa.eu/health/system/files/2020-10/sccs_o_233_0.pdf. |
[4] | Demir N. Nanotechnology in cosmetics: Opportunities and challenges[J]. NanoEra, 2021, 1 (1) : 19-23. |
[5] | Ge Lianghao. Preparation, characterization and application of zero-dimensional nano-photoelectric materials[D]. Qingdao: Qingdao University, 2017. |
[6] | National Medical Products Administration. Rules for registration and notification dossiers of new cosmetic ingredients[EB/OL]. (2021-02-26) [2023-04-26]. https://www.nmpa.gov.cn/xxgk/ggtg/qtggtg/20210304140454159.html. |
[7] | Center for Drug Evaluation of NMPA. Technical guidance for quality control study of nano drugs (interim)[EB/OL]. (2021-08-27) [2023-04-26]. https://www.cde.org.cn/zdyz/domesticinfopage?zdyzIdCODE=3e60526d467585dc77d35445f04bae5c. |
[8] |
Linkov P, Artemyev M, Efimov A E, et al. Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials[J]. Nanoscale, 2013, 5 (19) : 8781-8798.
doi: 10.1039/c3nr02372a pmid: 23934544 |
[9] | ICCR. Safety approaches to nanomaterials in cosmetics[EB/OL]. (2013-11) [2023-04-26]. https://www.iccr-cosmetics.org/downloads/topics/2013-11_safety_approaches_to_nanomaterials_in_cosmetics.pdf. |
[10] | Domingos R F, Baalousha M A, Ju-Nam Y, et al. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes[J]. Environ Sci Technol, 2009, 43 (19) : 7277-7284. |
[11] | EFSA. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health[EB/OL]. (2018-07-04) [2023-04-26]. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2018.5327. |
[12] | European Union. Catalogue of nanomaterials used in cosmetic products placed on the EU market[EB/OL]. (2016-12-31) [2023-04-26]. https://ec.europa.eu/docsroom/documents/38164/attachments/2/translations/en/renditions/pdf. |
[13] | European Union. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products[EB/OL]. (2009-12-22) [2023-04-26]. http://data.europa.eu/eli/reg/2009/1223/oj. |
[14] | European Union. Commission Regulation (EU) No 866/2014 of 8 August 2014 [EB/OL]. (2014-08-09) [2023-04-26]. https://eur-lex.europa.eu/eli/reg/2014/866/oj. |
[15] | European Union. Commission Regulation (EU) 2016/621 of 21 April 2016 [EB/OL]. (2016-04-22) [2023-04-26]. https://eur-lex.europa.eu/eli/reg/2016/621/oj. |
[16] | European Union. Commission Regulation (EU) 2016/1143 of 13 July 2016 [EB/OL]. (2016-07-14) [2023-04-26]. https://eur-lex.europa.eu/eli/reg/2016/1143/oj. |
[17] | European Union. Commission Regulation (EU) 2018/885 of 20 June 2018 [EB/OL]. (2018-06-21) [2023-04-26]. https://eur-lex.europa.eu/eli/reg/2018/885/oj. |
[18] | European Union. Commission Regulation (EU) 2016/1120 of 11 July 2016 [EB/OL]. (2016-07-12) [2023-04-26]. https://eur-lex.europa.eu/eli/reg/2016/1120/oj. |
[19] | HüGLIN D. Advanced UV absorbers for the protection of human skin[J]. Chimia (Aarau), 2016, 70(7/8): 496-501. |
[20] | SCCS. Opinion on 1, 3, 5-triazine, 2, 4, 6-tris[1, 1’-biphenyl]-4-yl-[EB/OL]. (2011-09-20) [2023-04-26]. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_070.pdf. |
[21] |
Subramaniam V D, Prasad S V, Banerjee A, et al. Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products[J]. Drug and Chemical Toxicology, 2019, 42 (1) : 84-93.
doi: 10.1080/01480545.2018.1491987 pmid: 30103634 |
[22] | SCCS. Opinion on zinc oxide (nano form)[EB/OL]. (2012-09-18) [2023-04-26]. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_103.pdf. |
[23] | Llobet E. Advanced nanomaterials for inexpensive gas microsensors[M]// Llobet E. Carbon nanomaterials. Elsevier, 2020: 55-84. |
[24] | Pastrana H, Avila A, Tsai C S J. Nanomaterials in cosmetic products: the challenges with regard to current legal frameworks and consumer exposure[J]. NanoEthics, 2018, 12 (2) : 123-137. |
[25] | SCCS. Opinion on carbon black (nano-form)[EB/OL]. (2013-12-12) [2023-04-26]. https://health.ec.europa.eu/system/files/2016-11/sccs_o_144_0.pdf. |
[26] | Dréno B, Alexis A, Chuberre B, et al. Safety of titanium dioxide nanoparticles in cosmetics[J]. Journal of the European Academy of Dermatology and Venereology, 2019, 33 (S7) : 34-46. |
[27] |
Warheit D B, Brown S C. What is the impact of surface modifications and particle size on commercial titanium dioxide particle samples?—A review of in vivo pulmonary and oral toxicity studies[J]. Toxicol Lett, 2019, 302: 42-59.
doi: S0378-4274(18)31692-8 pmid: 30468858 |
[28] | SCCS. Opinion on titanium dioxide (nano form)[EB/OL]. (2013-07-22) [2023-04-26]. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_136.pdf. |
[29] | SCCS. Opinion on titanium dioxide (nano form) coated with cetyl phosphate, manganese dioxide or triethoxycaprylylsilane as UV-filter in dermally applied cosmetic[EB/OL]. (2017-03-07) [2023-04-26]. https://health.ec.europa.eu/system/files/2018-07/sccs_o_202_0.pdf. |
[30] | Jesus A, Augusto I, Duarte J, et al. Recent trends on UV filters[J]. Applied Sciences, 2022, 12 (23) : 12003. |
[31] | SCCS. Opinion on 2, 2’-methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1, 1, 3, 3-tetramethylbutyl)phenol) (nano form)[EB/OL]. (2015-03-25) [2023-04-26]. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_168.pdf. |
[32] | Li Jichao. First edition of cosmetic nanomaterials catalogue published on European Commission website[J]. Detergent & Cosmetics, 2017, 40 (9) : 16. |
[33] | Mihranyan A, Ferraz N, Strømme M. Current status and future prospects of nanotechnology in cosmetics[J]. Progress in Materials Science, 2012, 57 (5) : 875-910. |
[34] | Santos A C, Marto J, Chá-chá R, et al. Nanotechnology-based sunscreens: a review[J]. Materials Today Chemistry, 2022, 23: 100709. |
[35] | Sakamoto M, Okuda H, Futamata H, et al. Influence of particle size of titanium dioxide on UV-ray shielding property[J]. KONA Powder and Particle Journal, 1996, 14: 183-189. |
[36] | Goh E G, Xu X, Mccormick P G. Effect of particle size on the UV absorbance of zinc oxide nanoparticles[J]. Scripta Materialia, 2014, 78-79: 49-52. |
[37] | Li Guohui, Li Chunzhong, Zhu Yihua. Surface modification of nanosized titanium dioxide particles as ultraviolet absorbent in cosmetics[J]. Huaxue Shijie, 2000 (2) : 59-63. |
[38] | Luo Fusheng, Han AiJun, Yang Yi, et al. Preparation and application in cosmetic of PMMA-TiO2 compounded micro-spheres[J]. China Surfactant Detergent & Cosmetics, 2002 (2) : 40-42. |
[39] | Yao Chao, Zhang Zhihong, Lin Xiping, et al. Nanosized titanium dioxide in sunscreen preparations[J]. China Surfactant Detergent & Cosmetics, 2003 (5) : 333-336. |
[40] | Yao Chao, Wu Fengqin, Lin Xiping, et al. Application of nanosize zinc oxide in sunscreen cosmetics[J]. China Surfactant Detergent & Cosmetics, 2003 (6) : 393-397. |
[41] | Florence L A, Jean-thierry S. Aqueous photoprotective composition comprising hydrophilic metal oxide nanopigments and a vinylpyrrolidone homopolymer: WO2006005521A1[P/OL]. 2006-01-19 [2023-04-26]. https://patents.google.com/patent/WO2006005521A1. |
[42] | Andrey K, Hartmut H, Jing H U, et al. Method for producing surface-modified nanoparticulate metal oxides, metal hydroxides, and/or metal oxide hydroxides: AU2008231831A1[P/OL]. 2008-10-02 [2023-04-26]. https://patents.google.com/patent/AU2008231831A1. |
[43] |
Parwaiz S, Khan M M, Pradhan D. CeO2-based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens[J]. Materials Express, 2019, 9: 185-202.
doi: 10.1166/mex.2019.1495 |
[44] | Han W. Titania nanocavities and method of making: US20090117384A1[P/OL]. 2009-05-07 [2023-04-26]. https://patents.google.com/patent/US20090117384A1. |
[45] | Prochazka Jan R. Process for manufacturing of high surface area USP grade nano-anatase base: US9198843B2[P/OL]. 2015-12-01 [2023-04-26]. https://patents.google.com/patent/US9198843B2. |
[46] | Guedens W J, Reynders M, Van Den Rul H, et al. ZnO-based sunscreen: The perfect example to introduce nanoparticles in an undergraduate or high school chemistry lab[J]. Journal of Chemical Education, 2014, 91: 259-263. |
[47] | Wu Mingyue, Li Kejian, Ma Yilong, et al. Application of nano TiO2, ZnO in cosmetics sunscreen field[J]. Guangdong Chemical Industry, 2021, 48 (5) : 69-74. |
[48] | Su Zhe, Luo Feiya, Zhang Fenglan, et al. On worldwide supervision and latest research progress about cosmetic nanomaterials[J]. Chinese Pharmaceutical Affairs, 2021, 35 (2) : 227-236. |
[49] | Chinese Pharmacopoeia Commission. The 2020 edition of the pharmacopoeia of the People’s Republic of China[M]. Beijing: China Medicine Science Press, 2020: 474. |
[50] | State Council of the People’s Republic of China. Decree of the State Council of the People’s Republic of China (No. 727): Regulations on supervision and administration of cosmetics[EB/OL]. (2020-06-29) [2023-04-26]. http://www.gov.cn/zhengce/content/2020-06/29/content_5522593.htm. |
[51] | National Medical Products Administration. Rules for registration and notification dossiers of cosmetics[EB/OL]. (2021-03-04) [2023-04-26]. https://www.nmpa.gov.cn/xxgk/ggtg/hzhpggtg/jmhzhptg/20210304140747119.html. |
[1] | 宋雨芯, 许琳琳, 佟瑶, 董坤, 何聪芬. 基于热糖化法体外生化抗糖化评价体系的优化与应用[J]. 日用化学工业(中英文), 2024, 54(5): 558-565. |
[2] | 宋阳, 吕永博, 任晗堃, 彭娇龙. 药用层孔菌发酵液控油及收缩毛孔机理及功效研究[J]. 日用化学工业(中英文), 2024, 54(5): 566-573. |
[3] | 黄浩婷, 陈正东, 陈子婷, 杨雨曼, 谢志洁, 刘佐仁. 国际视野下社会组织参与化妆品治理的模式比较研究[J]. 日用化学工业(中英文), 2024, 54(5): 596-604. |
[4] | 张嘉琪, 吴凡, 韩雨晴, 刘琦, 王俊杰, 盘瑶. 多光子成像技术及其在化妆品评估中的应用[J]. 日用化学工业(中英文), 2024, 54(5): 605-613. |
[5] | 曾广丰, 王志元, 谢建军, 王璐, 侯颖烨, 董洁. 液相色谱-串联质谱法快速测定化妆品中游离的乙醇胺类物质[J]. 日用化学工业(中英文), 2024, 54(5): 614-620. |
[6] | 邓诗雨, 孙旭, 金建明, 吴华. 化妆品植物原料(Ⅷ)——抗细菌的植物原料研究与开发[J]. 日用化学工业(中英文), 2024, 54(4): 385-392. |
[7] | 华中杰, 茅文瑄, 狄飞倩, 张佳婵, 王昌涛. 基于数据库可视化分析发酵源化妆品的应用与发展[J]. 日用化学工业(中英文), 2024, 54(4): 439-448. |
[8] | 陶薇, 李翔. 高效液相色谱法同时测定化妆品中24种美白成分[J]. 日用化学工业(中英文), 2024, 54(4): 484-489. |
[9] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[10] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[11] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[12] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[13] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[14] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[15] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
|