日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (4): 437-444.doi: 10.3969/j.issn.1001-1803.2023.04.010
詹鑫1,2,徐帆1,2,祝钧1,2,*(),何一凡1,2,裴晓静1,2
收稿日期:
2022-04-16
修回日期:
2023-03-30
出版日期:
2023-04-22
发布日期:
2023-04-25
基金资助:
Zhan Xin1,2,Xu Fan1,2,Zhu Jun1,2,*(),He Yifan1,2,Pei Xiaojing1,2
Received:
2022-04-16
Revised:
2023-03-30
Online:
2023-04-22
Published:
2023-04-25
Contact:
* Tel.: +86-13661302748, E-mail: 摘要:
木犀草素作为一种天然的黄酮类化合物,是一种可用于化妆品的功效原料,在皮肤上具有抗氧化、抗炎、延缓衰老以及美白作用,但存在溶解性差以及生物利用度低的问题,导致其在化妆品中的应用受到了限制。通过固体分散体、环糊精包合物、磷脂复合物、固体脂质纳米粒、纳米结构脂质体、纳米乳、聚合物胶束等制剂技术可以提高其溶解度和生物利用度,进而发挥良好作用。综述了木犀草素在皮肤上的抗氧化、抗炎、延缓衰老和美白作用通路,以及木犀草素应用于不同制剂技术的研究进展,用以改善木犀草素的溶解度和生物利用度差的问题,同时为进一步促进木犀草素制剂研究及化妆品产品应用提供参考。
中图分类号:
詹鑫, 徐帆, 祝钧, 何一凡, 裴晓静. 木犀草素的生理作用及制剂研究进展[J]. 日用化学工业(中英文), 2023, 53(4): 437-444.
Zhan Xin, Xu Fan, Zhu Jun, He Yifan, Pei Xiaojing. Research progress on physiological action and preparations of luteolin[J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 437-444.
[1] | Wang Lu. Extraction and purification of luteolin from peanut pod shell, preparation of nanoparticles and design and study of its stable Pickering emulsion[D]. Harbin: Northeast Forestry University, 2020. |
[2] |
Choi J S, Islam Md N, Ali Md Y, et al. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities[J]. Archives of Pharmacal Research, 2014, 37(10): 1354-1363.
doi: 10.1007/s12272-014-0351-3 pmid: 24988985 |
[3] |
Yan M, Liu Z, Yang H, et al. Luteolin decreases the UVA-induced autophagy of human skin fibroblasts by scavenging ROS[J]. Molecular Medicine Reports, 2016, 14(3): 1986-1992.
doi: 10.3892/mmr.2016.5517 |
[4] |
Chen G, Shen H, Zang L, et al. Protective effect of luteolin on skin ischemia-reperfusion injury through an AKT-dependent mechanism[J]. International Journal of Molecular Medicine, 2018, 42(6): 3073-3082.
doi: 10.3892/ijmm.2018.3915 pmid: 30280183 |
[5] |
Wölfle U, Esser P R, Simon-Haarhaus B, et al. UVB-induced DNA damage, generation of reactive oxygen species, and inflammation are effectively attenuated by the flavonoid luteolin in vitro and in vivo[J]. Free Radical Biology and Medicine, 2011, 50(9): 1081-1093.
doi: 10.1016/j.freeradbiomed.2011.01.027 pmid: 21281711 |
[6] |
McGarry T, Biniecka M, Veale D J, et al. Hypoxia, oxidative stress and inflammation[J]. Free Radical Biology and Medicine, 2018, 125: 15-24.
doi: S0891-5849(18)30145-X pmid: 29601945 |
[7] | Yu Qian, Wu Guanzhong. Research progress on anti-inflammatory mechanism of luteolin[J]. Pharmaceutical Research, 2019, 38(2): 108-111, 119. |
[8] |
Weng Z, Patel A B, Vasiadi M, et al. Luteolin inhibits human keratinocyte activation and decreases NF-κB induction that is increased in psoriatic skin[J]. PLoS ONE, 2014, 9(2): e90739.
doi: 10.1371/journal.pone.0090739 |
[9] |
Zhu Deqiu, Liu Kang, Yi Jiali, et al. Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium[J]. Biochimie, 2011, 93(3): 506-512.
doi: 10.1016/j.biochi.2010.11.002 pmid: 21081149 |
[10] | Zhu Shan, Zhao Zhiyue, Wang Zijing, et al. Molecular mechanism of skin age and research progress of chinese medicine on prevention and treatment of skin age[J]. Journal of Tianjin University of Traditional Chinese Medicine, 2021, 40(4): 431-439. |
[11] |
Lim S H, Jung S K, Byun S, et al. Luteolin suppresses UVB-induced photoageing by targeting JNK1 and p90RSK2[J]. Journal of Cellular and Molecular Medicine, 2013, 17(5): 672-680.
doi: 10.1111/jcmm.12050 |
[12] |
Xia H, Tang Y, Huang R, et al. Nanoliposome use to improve the stability of phenylethyl resorcinol and serve as a skin penetration enhancer for skin whitening[J]. Coatings, 2022, 12(3): 362.
doi: 10.3390/coatings12030362 |
[13] | Ren Qianqian, Wu Hua, Jin Jianming. Cosmetic plant materials (Ⅳ): Research and development of plant whitening materials for inhibiting melanin synthesis signaling pathway[J]. Daily Chemical Industry, 2021, 51(7): 590-597. |
[14] |
Choi M Y, Song H S, Hur H S, et al. Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells[J]. Archives of Pharmacal Research, 2008, 31(9): 1166-1171.
doi: 10.1007/s12272-001-1284-4 |
[15] | Pasarkar N, Waghmare S, Kamble H. Solid dispersion: a review[J]. Iconic Research and Engineering Journals, 2022, 5(7): 6. |
[16] | Deng Xiangtao, Hao Haijun, Chen Xiaofeng, et al. Preparation, characterization and pharmacokinetic of two solid dispersions of luteolin in rat[J]. Chinese Herbal Medicine, 2018, 49(24): 5787-5793. |
[17] | Wu Chun, Chen Jinhui. Preparation and optimization of luteolin solid dispersion[J]. Food Industry Technology, 2019, 40(8): 190-195. |
[18] |
Alshehri S, Imam S S, Altamimi M A, et al. Enhanced dissolution of luteolin by solid dispersion prepared by different methods: physicochemical characterization and antioxidant activity[J]. ACS Omega, 2020, 5(12): 6461-6471.
doi: 10.1021/acsomega.9b04075 pmid: 32258881 |
[19] |
Challa R, Ahuja A, Ali J, et al. Cyclodextrins in drug delivery: An updated review[J]. AAPS PharmSciTech, 2005, 6(2): E329-E357.
doi: 10.1208/pt060243 pmid: 16353992 |
[20] |
Jambhekar S S, Breen P. Cyclodextrins in pharmaceutical formulations Ⅱ: solubilization, binding constant, and complexation efficiency[J]. Drug Discovery Today, 2016, 21(2): 363-368.
doi: 10.1016/j.drudis.2015.11.016 pmid: 26687191 |
[21] | Han Dongxu, Li Tianle, Miao Ruidan, et al. Study on the solubilization of luteolin by seven-(2, 6-dimethyl)-β-cyclodextrin[J]. Chinese Journal of Modern Applied Pharmacy, 2020, 37(22): 2747-2751. |
[22] | Wang X, Hu X, Li S, et al. Preparation of antibacterial nanofibers by electrospinning polyvinyl alcohol containing a luteolin hydroxypropyl-β-cyclodextrin inclusion complex[J]. New Journal of Chemistry, The Royal Society of Chemistry, 2022, 46(5): 2360-2367. |
[23] | Long Youqi, Wang Lan, Shang Jingchuan, et al. Pharmacokinetics of luteolin and its inclusion complex with sulfobutyl ether-β-cyclodextrin in rats[J]. Chinese Journal of Pharmaceutical Analysis, 2018, 38(2): 282-287. |
[24] |
Loftsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice[J]. International Journal of Pharmaceutics, 2001, 225(1/2): 15-30.
doi: 10.1016/S0378-5173(01)00761-X |
[25] | Liu D, Mao Y, Ding L, et al. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability[J]. Trends in Food Science & Technology, 2019, 91: 586-597. |
[26] |
Zhao X, Shi C, Zhou X, et al. Preparation of a nanoscale dihydromyricetin-phospholipid complex to improve the bioavailability: in vitro and in vivo evaluations[J]. European Journal of Pharmaceutical Sciences, 2019, 138: 104994.
doi: 10.1016/j.ejps.2019.104994 |
[27] |
Biswas S, Mukherjee P K, Harwansh R K, et al. Enhanced bioavailability and hepatoprotectivity of optimized ursolic acid-phospholipid complex[J]. Drug Development and Industrial Pharmacy, 2019, 45(6): 946-958.
doi: 10.1080/03639045.2019.1583755 pmid: 30767678 |
[28] |
Khan J, Alexander A, Ajazuddin, et al. Luteolin-phospholipid complex: preparation, characterization and biological evaluation: Luteolin-phospholipid complex[J]. Journal of Pharmacy and Pharmacology, 2014, 66(10): 1451-1462.
doi: 10.1111/jphp.12280 pmid: 24934881 |
[29] | Khan J, Saraf S, Saraf S. Preparation and evaluation of luteolin-phospholipid complex as an effective drug delivery tool against GalN/LPS induced liver damage[J]. Pharmaceutical Development and Technology, 2015: 1-12. |
[30] | Li Yangjie, Zhou Jing. Preparation, characterization and in vivo pharmacokinetic behavior of luteolin-phospholipid complex[J]. Chinese Patent Drug, 2019, 41(6): 1381-1384. |
[31] | Lingayat V J, Zarekar N S, Shendge R S. Solid lipid nanoparticles: a review[J]. Nanoscience and Nanotechnology Research, 2017, 4(2): 67-72. |
[32] |
Jeong Y M, Ha J H, Park S N. Cytoprotective effects against UVA and physical properties of luteolin-loaded cationic solid lipid nanoparticle[J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 54-62.
doi: 10.1016/j.jiec.2015.12.014 |
[33] | Chen Jinhui, Wu Chun. Determination of entrapment efficiency and antioxidant activity of luteolin solid lipid particle[J]. Journal of Harbin Commercial University (Natural Science Edition), 2017, 33(6): 687-692. |
[34] |
Dang H, Meng M H W, Zhao H, et al. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies[J]. Journal of Nanoparticle Research, 2014, 16(4): 2347.
doi: 10.1007/s11051-014-2347-9 |
[35] | K S R, M D S R, P V. A review on: liposomes[J]. International Journal of Indigenous Herbs and Drugs, 2022, 5(6): 8-11. |
[36] |
Wu G, Li J, Yue J, et al. Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma[J]. Molecular Medicine Reports, 2018, 17(2): 2456-2464.
doi: 10.3892/mmr.2017.8185 pmid: 29207088 |
[37] | Liu Miao, Gao Yue, Li Kangfan, et al. Preparation and physicochemical properties of polyethylene glycol modified luteolin liposomes[J]. Modern Food Technology, 2021, 37(10): 118-125, 316. |
[38] |
Sinha A P. K. S. Enhanced induction of apoptosis in HaCaT cells by luteolin encapsulated in PEGylated liposomes: role of caspase-3/caspase-14[J]. Applied Biochemistry and Biotechnology, 2019, 188(1): 147-164.
doi: 10.1007/s12010-018-2907-z |
[39] |
Li J, Cheng X, Chen Y, et al. Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: An in vivo/in vitro evaluation[J]. International Journal of Pharmaceutics, 2016, 512(1): 262-272.
doi: S0378-5173(16)30777-3 pmid: 27545748 |
[40] | Yao Xuechao, Ning Hongxin, Huang Huan, et al. Research progress of luteolin preparation[J]. Chinese Herbal Medicine, 2021, 52(3): 873-882. |
[41] | Hu Zexiang, Tong Lei, Geng Yanmeng, et al. Study on DPPH· radical scavenging activity of luteolin nanoemulsion[J]. Journal of Anhui Science and Technology University, 2021, 35(6): 73-76. |
[42] | Shin K, Choi H, Song S K, et al. Nanoemulsion vehicles as carriers for follicular delivery of luteolin[J]. ACS Biomaterials Science & Engineering, 2018, 4(5): 1723-1729. |
[43] | Qing Weixia. Construction of luteolin and luteolin-glucoside nano-drug loading system[D]. Kaifeng: Henan University, 2016. |
[44] |
Qing W, Wang Y, Li H, et al. Preparation and characterization of copolymer micelles for the solubilization and in vitro release of luteolin and luteoloside[J]. AAPS PharmSciTech, 2017, 18(6): 2095-2101.
doi: 10.1208/s12249-016-0692-y pmid: 28004344 |
[45] |
Huang M, Gao X, Jinfeng Qiu, et al. Preparation and characterization of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin[J]. International Journal of Nanomedicine, 2013, 8: 3061-3069.
doi: 10.2147/IJN.S45062 pmid: 23990719 |
[46] |
Tan L, Liang C, Wang Y, et al. Pharmacodynamic effect of luteolin micelles on alleviating cerebral ischemia reperfusion injury[J]. Pharmaceutics, 2018, 10(4): 248.
doi: 10.3390/pharmaceutics10040248 |
[47] |
Gupta V, Mohapatra S, Mishra H, et al. Nanotechnology in cosmetics and cosmeceuticals: a review of latest advancements[J]. Gels, 2022, 8(3): 173.
doi: 10.3390/gels8030173 |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|