日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (6): 785-794.doi: 10.3969/j.issn.2097-2806.2025.06.013
李子浩1,董晓娜1,郑焕钦1,申婧1,*(),王淑军2,杜志平1,*(
)
收稿日期:
2024-08-03
修回日期:
2025-05-16
出版日期:
2025-06-22
发布日期:
2025-07-01
基金资助:
Zihao Li1,Xiaona Dong1,Huanqin Zheng1,Jing Shen1,*(),Shujun Wang2,Zhiping Du1,*(
)
Received:
2024-08-03
Revised:
2025-05-16
Online:
2025-06-22
Published:
2025-07-01
Contact:
E-mail: 摘要:
随着工业技术的快速发展,在石油开采、交通运输等生产过程产生的大量含油废水,具有排量大、成分复杂、生物降解性能差等特点,未经恰当处理排放入环境中,会对人体健康和生态环境造成巨大的危害。磁絮凝是一种新兴的水处理技术,在降低浊度、去除磷酸盐、有机物等领域已被证明具有显著效果,在水处理领域呈现出很好的应用潜力。文章系统综述了磁絮凝在含油废水处理中的应用研究进展,具体介绍了含油废水的来源及特性、磁絮凝的分类、工艺条件、在含油废水处理中的应用以及磁絮凝材料的回收利用,并对当前磁絮凝在处理含油废水领域的研究进行了简要介绍。最后从磁性材料、适用范围、多工艺耦合联用等方面对磁絮凝的发展方向进行了展望。
中图分类号:
李子浩, 董晓娜, 郑焕钦, 申婧, 王淑军, 杜志平. 磁絮凝在含油废水处理中的应用进展[J]. 日用化学工业(中英文), 2025, 55(6): 785-794.
Zihao Li, Xiaona Dong, Huanqin Zheng, Jing Shen, Shujun Wang, Zhiping Du. Application of magnetic flocculation in oily wastewater treatment[J]. China Surfactant Detergent & Cosmetics, 2025, 55(6): 785-794.
[1] |
王长青, 张西华, 宁朋歌, 等. 含油废水处理工艺研究进展及展望[J]. 化工进展, 2021, 40 (1) : 451-462.
doi: 10.16085/j.issn.1000-6613.2020-0452 |
[2] |
Li Yu, Mei Han, Fang He. A review of treating oily wastewater[J]. Arabian Journal of Chemistry, 2017, 10: 1913-1922.
doi: 10.1016/j.arabjc.2013.07.020 |
[3] | Sun Yongjun, Zhu Chengyu, Zheng Huali, et al. Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment[J]. Chemical Engineering Research & Design, 2017, 119: 23-32. |
[4] | Etchepare Ramiro Gonçalves, Oliveira Henrique, Azevedo Andre Camargo, et al. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles[J]. Separation and Purification Technology, 2017, 186: 326-332. |
[5] | Ye Rongchuan, Li Huosheng, Long Jianyou, et al. Bio-aerogels derived from corn stalk and Premna microphylla leaves as eco-friendly sorbents for oily water treatment: The role of microstructure in adsorption performance[J]. Journal of Cleaner Production, 2023, 403: 136720. |
[6] | Li Hui, Wang Yan, Wang Juan, et al. A review: Recent advances in oily wastewater treatment[J]. Recent Innovations in Chemical Engineering, 2014, 7: 17-24. |
[7] |
Ahmadi Navid, Nadoushan Mozhgan Ahmadi, Abolhasani Mohammad Hadi, et al. Investigating the efficiency of biological treatment process of oil pollutants using mix of scenedesmus obliquus and chlamydomonas reinhardtii algae: A case study[J]. Aims Environmental Science, 2021, 8 (3) : 221-237.
doi: 10.3934/environsci.2021015 |
[8] | Ahmad Tausif, Liu Xiaowei, Guria Chandan. Preparation of polyvinyl chloride (PVC) membrane blended with acrylamide grafted bentonite for oily water treatment[J]. Chemosphere, 2022, 310: 136840. |
[9] | Hassan Ahmed Khudhair, Maysoon M Abdul Hassan, Adnan F Hasan. Treatment of iraqi petroleum refinery wastewater by advanced oxidation processes[J]. Journal of Physics: Conference Series, 2020, 1660: 012071. |
[10] | Fard Ahmad Kayvani, Rhadfi Tarik, Mckay Gordon, et al. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents[J]. Chemical Engineering Journal, 2016, 293: 90-101. |
[11] | 王东升, 张明, 肖峰. 磁混凝在水与废水处理领域的应用[J]. 环境工程学报, 2012, 6 (3) : 705-713. |
[12] | Zhao Chuanliang, Zhou Juanyuan, Yan Yi, et al. Application of coagulation/flocculation in oily wastewater treatment: A review[J]. Science of the Total Environment, 2021, 765: 142795. |
[13] | 刘锋平, 李薇, 李继强, 等. HRT对UASB-SMBR(PTFE)组合工艺处理某油田含油废水性能的影响[J]. 石油学报(石油加工), 2012, 28 (6) : 1053-1060. |
[14] |
李秋宇, 袁可, 袁进, 等. 混凝处理对煤矿矿井水溶解性有机污染物的影响研究[J]. 工业水处理, 2025, 45 (3) : 152-156.
doi: 10.19965/j.cnki.iwt.2024-0109 |
[15] | Ma Jiangya, Wu Genyu, Zhang Rui, et al. Emulsified oil removal from steel rolling oily wastewater by using magnetic chitosan-based flocculants: Flocculation performance, mechanism, and the effect of hydrophobic monomer ratio[J]. Separation and Purification Technology, 2023, 304: 122329. |
[16] | Feng Wanli, Yin Yao, Mendoza Mari de Lourdes, et al. Freeze-thaw method for oil recovery from waste cutting fluid without chemical additions[J]. Journal of Cleaner Production, 2017, 148: 84-89. |
[17] | 孙辉, 杨波, 李方, 等. 槽罐车清洗废水处理工程实例[J]. 水处理技术, 2012, 38 (5) : 125-127. |
[18] | Nisenbaum Melina, Corti-Monzon Georgina, Villegas Plazas Marcela, et al. Enrichment and key features of a robust and consistent indigenous marine-cognate microbial consortium growing on oily bilge wastewaters[J]. Biodegradation, 2020, 31 (1/2) : 91-108. |
[19] |
贾艳萍, 单晓倩, 宋祥飞, 等. 响应面法优化餐饮废水混凝工艺研究[J]. 化工学报, 2021, 72 (9) : 4931-4940.
doi: 10.11949/0438-1157.20210001 |
[20] | 戴亮, 贺文智, 李冰璟, 等. 日用化学品行业废水处理技术的研究进展[J]. 化工进展, 2014, 33(S1): 273-278. |
[21] | Khadija Siddique, Muhammad Rizwan, Munazzam Jawad Shahid, et al. Textile wastewater treatment options: A critical review[J]. Enhancing Cleanup of Environmental Pollutants, 2019: 183-207. |
[22] | Adetunji Adegoke Isiaka, Olaniran Ademola Qlufolahan. Treatment of industrial oily wastewater by advanced technologies: A review[J]. Applied Water Science, 2021, 11 (6) : 98. |
[23] |
徐博, 池勇志, 张红丽, 等. 磁絮凝强化技术处理厌氧消化污泥脱水液[J]. 化工进展, 2020, 39 (11) : 4693-4701.
doi: 10.16085/j.issn.1000-6613.2020-0146 |
[24] |
Tang Juan, Wang Jie, Jia Hui, et al. The investigation on Fe3O4 magnetic flocculation for high efficiency treatment of oily micro-polluted water[J]. Journal of Environmental Management, 2019, 244: 399-407.
doi: S0301-4797(19)30688-7 pmid: 31132621 |
[25] |
Xiong Yongjiao, Huang Xiangfeng, Lu Bin, et al. Acceleration of floc-water separation and floc reduction with magnetic nanoparticles during demulsification of complex waste cutting emulsions[J]. Journal of Environmental Sciences, 2020, 89: 80-89.
doi: S1001-0742(19)32241-7 pmid: 31892403 |
[26] |
Lv Miao, Zhang Zhaohan, Zeng Jiayue, et al. Roles of magnetic particles in magnetic seeding coagulation-flocculation process for surface water treatment[J]. Separation and Purification Technology, 2019, 212: 337-343.
doi: 10.1016/j.seppur.2018.11.011 |
[27] | Liu Heng, Tian Na, Tian Yayang, et al. Highly efficient adsorption of eriochrome black T in wastewater on mesoporous alumina sphere[J]. Advanced Materials Research, 2014, 936: 834-842. |
[28] | Lv Miao, Li Dongyi, Zhang Zhaohan, et al. Unveiling the correlation of Fe3O4 fractions upon the adsorption behavior of sulfamethoxazole on magnetic activated carbon[J]. Science of Total Environment, 2021, 735: 143717. |
[29] | Du Chunjie, Hu Yuehua, Han Haisheng, et al. Magnetic separation of phosphate contaminants from starch wastewater using magnetic seeding[J]. Science of Total Environment, 2019, 695: 133723. |
[30] | Tang Honghu, Wang Li, Sun Wei, et al. Electric arc furnace dust as magnetic carrier particles for removal of micro-fine particles from suspensions[J]. Separation and Purification Technology, 2017, 176: 220-230. |
[31] | Mohamed Noor Mohamed Hizam, Wong Syie Luming, Ngadi Norzita, et al. Assessing the effectiveness of magnetic nanoparticles coagulation/flocculation in water treatment: a systematic literature review[J]. International Journal of Environmental Science and Technology, 2021 (3) : 1-22. |
[32] | Chen Yiqing, Luo Man, Cai Wangfeng. Influence of operating parameters on the performance of magnetic seeding flocculation[J]. Environmental Science and Pollution Research, 2016, 23 (3) : 2873-2881. |
[33] |
Zhang Ming, Xiao Feng, Xu Xuzheng, et al. Novel ferromagnetic nanoparticle composited PACls and their coagulation characteristics[J]. Water Research, 2012, 46 (1) : 127-135.
doi: 10.1016/j.watres.2011.10.025 pmid: 22100054 |
[34] | Ma Wei, Sha Xuelong, Gao Lianlian, et al. Effect of iron oxide nanocluster on enhanced removal of molybdate from surface water and pilot scale test[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 478: 45-53. |
[35] | Zhang Bo, Jiang Dan, Guo Xiaochen, et al. Removal of Microcystis aeruginosa using nano-Fe3O4 particles as a coagulant aid[J]. Environmental Science and Pollution Research, 2015, 22 (23) : 18731-18740. |
[36] | Zhang Wenlin, Zhang Lianying, Zhao Xijuan, et al. Citrus pectin derived ultrasmall Fe3O4@C nanoparticles as a high-performance adsorbent toward removal of methylene blue[J]. Journal of Molecular Liquids, 2016, 222: 995-1002. |
[37] | Ma Jiangya, Xia Wei, Fu Xue, et al. Magnetic flocculation of algae-laden raw water and removal of extracellular organic matter by using composite flocculant of Fe3O4/cationic polyacrylamide[J]. Journal of Cleaner Production, 2020, 248: 119276. |
[38] | Ma Jiangya, Fu Xue, Jiang liyan, et al. Magnetic flocculants synthesized by Fe3O4 coated with cationic polyacrylamide for high turbid water flocculation[J]. Environmental Science and Pollution Research, 2018, 25 (26) : 25955-25966. |
[39] | Liu Zuli, Liu Cuicui, Yao Kailun, et al. Preparation and characterization of micron-sized magnetic microspheres by one-step suspension polymerization[J]. Journal of Applied Polymer Science, 2007, 105 (3) : 1331-1335. |
[40] |
Chen Yongle, Qian Hao, Wu Fan. Clearance and recovery of Cd(Ⅱ) from aqueous solution by magnetic separation technology[J]. Chemosphere, 2011, 83 (9) : 1214-1219.
doi: 10.1016/j.chemosphere.2011.03.043 pmid: 21489601 |
[41] | Lv Ting, Chen Yi, Qi Dongming, et al. Treatment of emulsified oil wastewaters by using chitosan grafted magnetic nanoparticles[J]. Journal of Alloys and Compounds, 2016, 696: 1205-1212. |
[42] | Ma Jiangya, Fu Xue, Xia Wei, et al. Removal of emulsified oil from water by using recyclable chitosan based covalently bonded composite magnetic flocculant: Performance and mechanism[J]. Journal of Hazardous Materials, 2021, 419: 126529. |
[43] |
Mohamed Hizam Mohamed Noor, Kho Jia Lee, Norzita Ngadi. Starch engineered with Moringa oleifera seeds protein crosslinked Fe3O4: A synthesis and flocculation studies[J]. International Journal of Biological Macromolecules, 2021, 193: 2006-2020.
doi: 10.1016/j.ijbiomac.2021.11.031 pmid: 34752794 |
[44] | Mohamed Hizam Mohamed Noor, Norzita Ngadi, Wong Syie Luing. Synthesis of magnetic cellulose as flocculant for pre-treatment of anaerobically treated palm oil mill effluent[J]. Chemical Engineering Transactions, 2018, 63: 589-594. |
[45] | Wang Chen, Wang Yajun, Ou Yang, et al. Preparation and characterization of polymer-coated Fe3O4 magnetic flocculant[J]. Separation Science and Technology, 2018, 53 (5) : 814-822. |
[46] | Li Shuai, Wang Xinmin. Fly-ash-based magnetic coagulant for rapid sedimentation of electronegative slimes and ultrafine tailings[J]. Powder Technology, 2016, 303: 20-26. |
[47] | Liu Zhi, Duan Xi, Zhan Peng, et al. Coagulation performance and microstructural morphology of a novel magnetic composite coagulant for pre-treating landfill leachate[J]. International Journal of Enviromental Science and Technology, 2017, 14 (11) : 2507-2518. |
[48] | Byrne James, Coker Victoria, Cespedes Eva, et al. Biosynthesis of zinc substituted magnetite nanoparticles with enhanced magnetic properties[J]. Advanced Functional Materials, 2014, 24 (17) : 2518-2529. |
[49] | Li Shuai, Wang Xinmin, Zhang Qinli. Dynamic experiments on flocculation and sedimentation of argillized ultrafine tailings using fly-ash-based magnetic coagulant[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (7) : 1975-1984. |
[50] | Wang Shikai, Wang Feng, Hu Yiru, et al. Magnetic flocculant for high efficiency harvesting of microalgal cells[J]. Acs Aoolied Materials & Interfaces, 2014, 6 (1) : 109-115. |
[51] | Duan Ming, Xu Zipi, Zhang Yali, et al. Core-shell composite nanoparticles with magnetic and temperature dual stimuli-responsive properties for removing emulsified oil[J]. Advanced Powder Technology, 2017, 28 (5) : 1291-1297. |
[52] | Karapinar, Nuray. Magnetic separation of ferrihydrite from wastewater by magnetic seeding andhigh-gradient magnetic separation[J]. International Journal of Mineral Processing, 2003, 70 (1) : 45-54. |
[53] |
Lv Ting, Zhang Shuang, Qi Dongming, et al. Enhanced demulsification from aqueous media by using magnetic chitosan-based flocculant[J]. Journal of Colloid and Interface Science, 2018, 518: 76-83.
doi: S0021-9797(18)30172-3 pmid: 29448228 |
[54] |
Zhou Yuhao, Zheng Huaili, Huang Yaoyao, et al. Hydrophobic modification of cationic microblocked polyacrylamide and its enhanced flocculation performance for oily wastewater treatment[J]. Journal of Materials Science, 2019, 54 (13) : 10024-10040.
doi: 10.1007/s10853-019-03601-w |
[1] | 蒋晓倩, 张丽亚, 宋爱新, 孙秀萍. 鼠李糖脂稳定的纳米乳液及其凝胶的构筑和性能研究[J]. 日用化学工业(中英文), 2025, 55(6): 677-686. |
[2] | 王兴婷, 施兆娟, 吴军, 袁传勋, 金日生. 油茶籽油-神经酰胺纳米乳液制备及研究[J]. 日用化学工业(中英文), 2025, 55(6): 739-746. |
[3] | 徐月玲, 董心凤, 朱鲜艳, 杨歌, 徐瑞霜, 唐伟, 于丽. 负载薄荷醇的O1/W/O2型双重乳液的制备及性能研究[J]. 日用化学工业(中英文), 2025, 55(6): 747-755. |
[4] | 徐辉. 微胶囊乳液型聚合物对延展型表面活性剂界面张力的影响[J]. 日用化学工业(中英文), 2025, 55(4): 407-414. |
[5] | 程振, 耿涛, 王文琪, 台秀梅. 精制褐煤蜡/蜂蜡复合O/W乳液的制备工艺及应用研究[J]. 日用化学工业(中英文), 2025, 55(4): 437-445. |
[6] | 张可可, 邹欢金, 樊晔, 张永民, 刘雪锋, 方银军. 基于两亲性Janus-SiO2颗粒制备高稳定性O/W型Pickering乳液[J]. 日用化学工业(中英文), 2025, 55(3): 271-278. |
[7] | 刘心怡, 陈娟博, 侯皓月, 侯佳伟, 石美玲, 曾飒, 孟涛. 载香精Pickering乳液型多核胶囊制备及缓释性能研究[J]. 日用化学工业(中英文), 2025, 55(3): 286-294. |
[8] | 蒋伟杰,蒋航. 基于生物质颗粒的油包水(W/O)型Pickering乳液[J]. 日用化学工业(中英文), 2025, 55(2): 142-153. |
[9] | 韩旭,吴槚佳,周康夫,尚亚卓. Pickering Janus乳液微观结构的影响因素及其应用[J]. 日用化学工业(中英文), 2025, 55(2): 176-184. |
[10] | 徐佳雯,郭婉黄,盛凯蔓,尚亚卓. 大鲵肽的护肤功效研究及其应用[J]. 日用化学工业(中英文), 2025, 55(2): 194-201. |
[11] | 张聚媛,台秀梅,刘慧民,马晓原,高续,罗毅. 油相组成对W/O型Pickering乳液稳定性和流变性能的影响[J]. 日用化学工业(中英文), 2024, 54(8): 879-886. |
[12] | 谷秀君, 罗萍, 蔡承建, 杨德军, 蒋家超, 杨靖. 洗衣废水影响纳米银团聚及溶解行为的关键因素研究进展[J]. 日用化学工业(中英文), 2024, 54(7): 844-852. |
[13] | 丁文杰, 申婧, 董晓娜, 杜志平, 王淑军. AC@Fe3O4的制备及其对水中乳液的吸附性能研究[J]. 日用化学工业(中英文), 2024, 54(4): 376-384. |
[14] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[15] | 刘晓纯, 罗婷婷, 戴洁, 陈来成, 何秋星. 美藤果发酵多肽对液晶乳液结构的影响[J]. 日用化学工业(中英文), 2024, 54(12): 1456-1464. |
|