日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (7): 844-852.doi: 10.3969/j.issn.2097-2806.2024.07.012
谷秀君1,罗萍1,蔡承建1,杨德军1,蒋家超1,2,杨靖3,*()
收稿日期:
2023-08-09
修回日期:
2024-06-24
出版日期:
2024-07-22
发布日期:
2024-07-26
基金资助:
Xiujun Gu1,Ping Luo1,Chengjian Cai1,Dejun Yang1,Jiachao Jiang1,2,Jing Yang3,*()
Received:
2023-08-09
Revised:
2024-06-24
Online:
2024-07-22
Published:
2024-07-26
Contact:
*E-mail: 13685127761@163.com.
摘要:
纳米银因卓越的抗菌性能被广泛用于纺织品生产中。然而,在纺织品洗涤过程中,大量的纳米银会释放并进入到洗衣废水中。不同的洗涤条件决定了释放出的纳米银的团聚及溶解行为,进而影响后续环境过程并对水生生物及生态系统产生负面影响。为探究不同洗涤条件对纳米银团聚及溶解行为的具体影响,降低纳米银所带来的环境风险,文章归纳了国内外相关研究文献,在分析洗衣废水特点的基础上,讨论了废水中洗涤剂种类、光照、pH值、离子强度等条件对纳米银团聚及溶解行为的单独或联合作用与影响机理,并根据机理提出了减小纳米银生物毒性的建议,包括减少洗涤过程中纳米银的释放及洗衣废水处理方法的改善,最后对洗衣废水中纳米银未来的研究方向进行展望,提出了后续研究建议。
中图分类号:
谷秀君, 罗萍, 蔡承建, 杨德军, 蒋家超, 杨靖. 洗衣废水影响纳米银团聚及溶解行为的关键因素研究进展[J]. 日用化学工业(中英文), 2024, 54(7): 844-852.
Xiujun Gu, Ping Luo, Chengjian Cai, Dejun Yang, Jiachao Jiang, Jing Yang. Aggregation and dissolution behavior of silver nanoparticles in laundry wastewater: A review[J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 844-852.
表2
洗衣废水对AgNPs团聚、溶解行为的影响"
洗涤条件 | AgNPs的团聚和/或溶解行为 | 参考文献 |
---|---|---|
表面活性剂 | 当表面活性剂的浓度足以使AgNPs的Zeta电位绝对值<20 mV时,AgNPs将发生团聚; 反之AgNPs则保持在稳定状态,不产生团聚 | [ |
氧化剂 | 加速AgNPs的氧化,促进其溶解 | [ |
光照 | 使化学结合在纺织品上的AgNPs更加稳定,减缓AgNPs溶解; 可将已溶解的银离子还原为不易溶解的、较好的结晶AgNPs,使其附在织物上,从而降低总银的释放量 | [ |
pH值 | 对于Citrate-AgNPs,高pH值会使Citrate-AgNPs保持在分散状态,不产生团聚; 对于空间位阻稳定的PVP-AgNPs,碱性条件可能对PVP-AgNPs的团聚粒径并无影响; 对于静电斥力和空间位阻共同稳定的BPEI-AgNPs,高pH值会使BPEI-AgNPs发生团聚 | [ |
无机阳离子 | 可以与Citrate-AgNPs表面的羧基络合,屏蔽表面电荷,削弱颗粒-颗粒和颗粒-界面排斥静电力,致使AgNPs团聚,粒径增加 | [ |
无机阴离子 | 当Cl/Ag比值≤535时,Citrate-AgNPs团聚增强;当Cl/Ag比值<2 675时,AgNPs的溶解受到抑制; 当Cl/Ag比值≥2 675时,AgClx (x-1) -等的生成会进一步促进AgNPs的溶解; PO43-可以取代柠檬酸盐涂层并通过其氧原子与AgNPs表面结合,从而产生磷酸盐包覆的AgNPs ((20±0.2) nm),它比Citrate-AgNPs((24.5±0.1) nm)更稳定,粒径更小; SO42-会引起硫酸盐还原的AgNPs的团聚 | [ |
[1] | Wu Y, Yang Y, Zhang Z, et al. Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles[J]. Textile Research Journal, 2019, 89 (5) : 867-880. |
[2] |
Lorenz C, Windler L, von Goetz N, et al. Characterization of silver release from commercially available functional (nano) textiles[J]. Chemosphere, 2012, 89 (7) : 817-824.
doi: 10.1016/j.chemosphere.2012.04.063 pmid: 22677521 |
[3] |
Zhang C, Hu Z, Deng B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms[J]. Water Research, 2016, 88: 403-427.
doi: S0043-1354(15)30290-6 pmid: 26519626 |
[4] | Benn T M, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics[J]. Environmental Science & Technology, 2008, 42 (11) : 4133-4139. |
[5] |
Angel B M, Batley G E, Jarolimek C V, et al. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems[J]. Chemosphere, 2013, 93 (2) : 359-365.
doi: 10.1016/j.chemosphere.2013.04.096 pmid: 23732009 |
[6] | Tolaymat T M, El Badawy A M, Genaidy A, et al. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers[J]. Science of the Total Environment, 2010, 408 (5) : 999-1006. |
[7] |
Traboulsi H, Awada C. Toward the development of ultrasensitive detectors for environmental applications: A kinetic study of Cr(Ⅲ) monitoring in water using EDTA and SERS techniques[J]. Acs Omega, 2020, 5 (48) : 31352-31361.
doi: 10.1021/acsomega.0c04844 pmid: 33324846 |
[8] | Mdluli P S, Sosibo N M, Mashazi P N, et al. Selective adsorption of PVP on the surface of silver nanoparticles: A molecular dynamics study[J]. Journal of Molecular Structure, 2011, 1004 (1-3) : 131-137. |
[9] | Tan S, Erol M, Attygalle A, et al. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions[J]. Langmuir, 2007, 23 (19) : 9836-9843. |
[10] | Zhou W, Liu Y L, Stallworth A M, et al. Effects of pH, electrolyte, humic acid, and light exposure on the long-term fate of silver nanoparticles[J]. Environmental Science & Technology, 2016, 50 (22) : 12214-12224. |
[11] | Liu J, Hurt R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids[J]. Environmental Science & Technology, 2010, 44 (6) : 2169-2175. |
[12] | El Badawy A M, Luxton T P, Silva R G, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions[J]. Environmental Science & Technology, 2010, 44 (4) : 1260-1266. |
[13] | Levard C, Mitra S, Yang T, et al. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli[J]. Environmental Science & Technology, 2013, 47 (11) : 5738-5745. |
[14] | McGeer J C, Playle R C, Wood C M, et al. A physiologically based biotic ligand model for predicting the acute toxicity of waterborne silver to rainbow trout in freshwaters[J]. Environmental Science & Technology, 2000, 34 (19) : 4199-4207. |
[15] | Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing[J]. Environmental Science & Technology, 2009, 43 (21) : 8113-8118. |
[16] |
Hedberg J, Lundin M, Lowe T, et al. Interactions between surfactants and silver nanoparticles of varying charge[J]. Journal of Colloid and Interface Science, 2012, 369: 193-201.
doi: 10.1016/j.jcis.2011.12.004 pmid: 22204969 |
[17] | Braga J K, Varesche M B A. Commercial laundry water characterisation[J]. American Journal of Analytical Chemistry, 2013 (5) : 8-16. |
[18] |
Delforno T P, Moura A G L, Okada D Y, et al. Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors[J]. Bioresource Technology, 2014, 154: 114-121.
doi: 10.1016/j.biortech.2013.11.102 pmid: 24384318 |
[19] | Gu Yonggang, Gao Dan, Bai Huiwen, et al. Survey and countermeasures of typical laundry wastewater pollution in urban area of Beijing[J]. Industrial Water & Wastewater, 2020, 51 (5) : 5-8. |
[20] | Turkay O, Barisci S, Sillanpaa M. E-peroxone process for the treatment of laundry wastewater: A case study[J]. Journal of Environmental Chemical Engineering, 2017, 5 (5) : 4282-4290. |
[21] | Kiendrebeogo M, Ouarda Y, Karimi Estahbanati M R, et al. Nanoplastics removal from spiked laundry wastewater using electro-peroxidation process[J]. Chemosphere, 2023, 341: 139963. |
[22] | Melian E P, Santiago D E, Leon E, et al. Treatment of laundry wastewater by different processes: Optimization and life cycle assessment[J]. Journal of Environmental Chemical Engineering, 2023, 11 (2) : 109302. |
[23] | Vishali S, Poonguzhali E, Banerjee I, et al. Purification of domestic laundry wastewater in an integrated treatment system consists of coagulation and ultrafiltration membrane process[J]. Chemosphere, 2023, 314: 137662. |
[24] | Vasiljevic S, Vujic M, Agbaba J, et al. Efficiency of coagulation/flocculation for the removal of complex mixture of textile fibers from water[J]. Processes, 2023, 11 (3) : 820. |
[25] | Pandey A, Katam K, Joseph P, et al. Micropollutant removal from laundry wastewater in algal-activated sludge systems: microbial studies[J]. Water Air and Soil Pollution, 2020, 231 (7) : 374. |
[26] | Bering S, Mazur J, Tarnowski K, et al. The application of moving bed bio-reactor (MBBR) in commercial laundry waste water treatment[J]. Science of the Total Environment, 2018, 627: 1638-1643. |
[27] | Limpiteeprakan P, Babel S, Lohwacharin J, et al. Release of silver nanoparticles from fabrics during the course of sequential washing[J]. Environmental Science and Pollution Research, 2016, 23 (22) : 22810-22818. |
[28] | Bi Y, Westerband E I, Alum A, et al. Antimicrobial efficacy and life cycle impact of silver-containing food containers[J]. Acs Sustainable Chemistry & Engineering, 2018, 6 (10) : 13086-13095. |
[29] | Mitrano D M, Lombi E, Dasilva Y A R, et al. Unraveling the complexity in the aging of nanoenhanced textiles: A comprehensive sequential study on the effects of sunlight and washing on silver nanoparticles[J]. Environmental Science & Technology, 2016, 50 (11) : 5790-5799. |
[30] | Sato-Berru R, Redon R, Vaquez-Olmos A, et al. Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2009, 40 (4) : 376-380. |
[31] |
Mitrano D M, Rimmele E, Wichser A, et al. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles[J]. Acs Nano, 2014, 8 (7) : 7208-7219.
doi: 10.1021/nn502228w pmid: 24941455 |
[32] | Huynh K A, Chen K L. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions[J]. Environ Sci Technol, 2011, 45 (13) : 5564-5571. |
[33] | Baalousha M, Nur Y, Roemer I, et al. Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles[J]. Science of the Total Environment, 2013, 454: 119-131. |
[34] | White P, Hjortkjaer J. Preparation and characterisation of a stable silver colloid for SER(R)S spectroscopy[J]. Journal of Raman Spectroscopy, 2014, 45 (1) : 32-40. |
[35] | Dong B, Liu G, Zhou J, et al. Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature[J]. J Hazard Mater, 2020, 383: 121190. |
[36] |
Radwan I M, Potter P M, Dionysiou D D, et al. Silver nanoparticle interactions with surfactant-based household surface cleaners[J]. Environmental Engineering Science, 2021, 38 (6) : 481-488.
doi: 10.1089/ees.2020.0160 pmid: 34675467 |
[37] | Reed R B, Zaikova T, Barber A, et al. Potential environmental impacts and antimicrobial efficacy of silver and nanosilver-containing textiles[J]. Environmental Science & Technology, 2016, 50 (7) : 4018-4026. |
[38] | Falletta E, Bonini M, Fratini E, et al. Clusters of poly(acrylates) and silver nanoparticles: Structure and applications for antimicrobial fabrics[J]. J Phys Chem C, 2008, 112 (31) : 11758-11766. |
[39] |
Fernando I, Zhou Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles[J]. Chemosphere, 2019, 216: 297-305.
doi: S0045-6535(18)31983-0 pmid: 30384298 |
[40] | Capjak I, Avdicevic M Z, Sikiric M D, et al. Behavior of silver nanoparticles in wastewater: systematic investigation on the combined effects of surfactants and electrolytes in model systems[J]. Environmental Science-Water Research & Technology, 2018, 4 (12) : 2146-2159. |
[41] | Claesson P M, Poptoshev E, Blomberg E, et al. Polyelectrolyte-mediated surface interactions[J]. Advances in Colloid and Interface Science, 2005, 114: 173-187. |
[42] | Beyer P, Nordmeier E. Some phenomena of counterion condensation on dextran sulphate[J]. European Polymer Journal, 1995, 31 (11) : 1031-1036. |
[43] |
Afshinnia K, Sikder M, Cai B, et al. Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics[J]. Journal of Colloid and Interface Science, 2017, 487: 192-200.
doi: S0021-9797(16)30800-1 pmid: 27770683 |
[44] | Moula A, Borgi M A, Loukil S, et al. Assessment of phosphate laundries wastewater phytotoxicity and biotreatment assays[J]. Clean-Soil, Air, Water, 2020, 48 (11) : 2000077. |
[45] | El Badawy A M, Scheckel K G, Suidan M, et al. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles[J]. Sci Total Environ, 2012, 429: 325-331. |
[46] | Furusawa K, Yamamoto K. Adsorption of monodisperse polystyrene onto porous glass: Ⅱ. Study of the exchangeability of adsorbed polymer layer[J]. Journal of Colloid and Interface Science, 1983, 96 (1) : 268-274. |
[47] |
Gebauer J S, Treuel L. Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles[J]. Journal of Colloid and Interface Science, 2011, 354 (2) : 546-554.
doi: 10.1016/j.jcis.2010.11.016 pmid: 21146829 |
[48] |
Li X, Lenhart J J, Walker H W. Dissolution-accompanied aggregation kinetics of silver nanoparticles[J]. Langmuir, 2010, 26 (22) : 16690-16698.
doi: 10.1021/la101768n pmid: 20879768 |
[49] | Afshinnia K, Baalousha M. Effect of phosphate buffer on aggregation kinetics of citrate-coated silver nanoparticles induced by monovalent and divalent electrolytes[J]. Science of the Total Environment, 2017, 581: 268-276. |
[50] | Nielsen A H, Vollertsen J, Jensen H S, et al. Aerobic and anaerobic transformations of sulfide in a sewer system—Field study and model simulations[J]. Water Environment Research, 2008, 80 (1) : 16-25. |
[51] | Radwan I M, Gitipour A, Potter P M, et al. Dissolution of silver nanoparticles in colloidal consumer products: effects of particle size and capping agent[J]. Journal of Nanoparticle Research, 2019, 21 (7) : 155. |
[52] | Cervantes-Aviles P, Huang Y, Keller A A. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater[J]. Water Res, 2019, 166: 115072. |
[53] |
Yang Y, Wang J, Xiu Z, et al. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria[J]. Environmental Toxicology and Chemistry, 2013, 32 (7) : 1488-1494.
doi: 10.1002/etc.2230 pmid: 23554086 |
[54] | Brown J. Impact of silver nanoparticles on wastewater treatment[J]. Nanotechnologies for Environmental Remediation: Applications and Implications, 2017: 255-267. |
[55] | Zheng Y, Hou L, Liu M, et al. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments[J]. Science Advances, 2017, 3 (8) : 1603229. |
[56] | Hollingsworth M W. Role of detergent builders in fabric washing formulations[J]. Journal of the American Oil Chemists’ Society, 1978, 55 (1) : 49-51. |
[57] | Blaser S A, Scheringer M, MacLeod M, et al. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles[J]. Science of the Total Environment, 2008, 390 (2/3) : 396-409. |
[58] | Jiang J, Wang X, Zhang Y, et al. The aggregation and dissolution of citrate-coated AgNPs in high ammonia nitrogen wastewater and sludge from UASB-anammox reactor[J]. International Journal of Environmental Research and Public Health, 2022, 19 (15) : 9502. |
[59] | Zhang Pengyu, Li Wenyang, Xiao Lintong, et al. Research progress of mechanism and technology for chloride ion removal in water[J]. Water Purification Technology, 2023, 42 (12) : 17-26. |
[1] | 汪磊, 田君. C-O官能团修饰的CaMoO4光催化剂的合成与光催化活性研究[J]. 日用化学工业(中英文), 2024, 54(6): 669-676. |
[2] | 邓绍林, 周鹏飞, 朱玉龙. 疏水缔合聚合物高效溶解方法研究进展[J]. 日用化学工业(中英文), 2024, 54(4): 449-456. |
[3] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[4] | 张晓杰, 张明哲, 徐志成, 宫清涛, 张磊, 张路. 烷基羧酸甜菜碱驱油机理研究[J]. 日用化学工业(中英文), 2024, 54(2): 123-130. |
[5] | 安瑞,赵庆. 水溶液中三氯生的吸附研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 945-953. |
[6] | 田淑杰, 高伟. 轻质原油采出液低温破乳剂优选及作用机理[J]. 日用化学工业(中英文), 2023, 53(7): 773-780. |
[7] | 杨斌. 疏水缔合聚合物HAWP与芥酸酰胺丙基烯丙基溴化铵复合体系流变和界面性能研究[J]. 日用化学工业(中英文), 2023, 53(4): 365-372. |
[8] | 廖建军, 李华斌, 邓金玭, 何刚, 刘思思, 张肖. 高温非均质油藏聚合物凝胶调驱实验研究[J]. 日用化学工业(中英文), 2023, 53(4): 373-381. |
[9] | 赵峰滔,李宣镜,李恩泽,杜志平,李剑锋,申婧. 磁性纳米Fe3O4吸附材料的制备及在废水处理中的应用[J]. 日用化学工业, 2022, 52(8): 882-891. |
[10] | 陈晗俊,庄洁,吴旭,沈兴亮,张婉萍,张倩洁. 羟乙基纤维素和γ-聚谷氨酸混合体系的流变行为及协同机理[J]. 日用化学工业, 2022, 52(6): 577-584. |
[11] | 喻冬秀,金相新,刘嘉欣,李俊朗. 纳米银对椰油酰基谷氨酸三乙醇胺盐表面活性的影响[J]. 日用化学工业, 2022, 52(4): 363-369. |
[12] | 王晓宇,王亚静,赵鑫,王雁雯,王宇,黄赞扬. 黄杜中药漱口液对牙周病相关菌的影响及作用机理研究[J]. 日用化学工业, 2022, 52(1): 20-27. |
[13] | 梁海运,马泽盟,孙瑞良,宋丽雅. 植物源黄酮抑菌作用研究进展[J]. 日用化学工业, 2021, 51(8): 775-781. |
[14] | 于惠,朱永峰,惠爱平,杨芳芳,王爱勤. 凹凸棒石在Pickering乳液制备中的应用研究进展[J]. 日用化学工业, 2021, 51(7): 670-678. |
[15] | 于笑乾,马宇晨,丁文玉,胡艺琼,贾焱,何聪芬. 非生理性脱发种类及其发生机理研究进展[J]. 日用化学工业, 2021, 51(11): 1118-1124. |
|