日用化学工业 ›› 2021, Vol. 51 ›› Issue (8): 775-781.doi: 10.3969/j.issn.1001-1803.2021.08.012
梁海运1,2,马泽盟1,2,孙瑞良1,2,宋丽雅1,2,*()
收稿日期:
2020-11-16
修回日期:
2021-07-07
出版日期:
2021-08-22
发布日期:
2021-08-24
通讯作者:
宋丽雅
Liang Haiyun1,2,Ma Zemeng1,2,Sun Ruiliang1,2,Song Liya1,2,*()
Received:
2020-11-16
Revised:
2021-07-07
Online:
2021-08-22
Published:
2021-08-24
Contact:
Liya Song
摘要:
黄酮类化合物广泛分布于自然界中的水果、蔬菜和中药材内,其中部分黄酮具有抗菌活性,是天然抑菌剂开发的热点。本文综述了植物源黄酮的分类和广谱抑菌性;通过比较不同结构对黄酮抑菌性的影响,总结了不同亚类植物源黄酮的抑菌构效关系;又从细胞整体形态、能量代谢及抑制生物大分子合成方面对植物源黄酮的抑菌机理做出了总结;最后分析了植物源黄酮在食品防腐、化妆品及医药行业的应用前景,旨在为植物源黄酮抑菌剂的开发提供理论参照。
中图分类号:
梁海运,马泽盟,孙瑞良,宋丽雅. 植物源黄酮抑菌作用研究进展[J]. 日用化学工业, 2021, 51(8): 775-781.
Liang Haiyun,Ma Zemeng,Sun Ruiliang,Song Liya. Research progress on antibacterial activity of bioactive flavonoids[J]. China Surfactant Detergent & Cosmetics, 2021, 51(8): 775-781.
表4
植物源黄酮对微生物细胞壁膜的影响"
黄酮名称 | 分类 | 目标菌 | 对整体形态的影响 | 参考文献 |
---|---|---|---|---|
儿茶素 | 黄烷醇 | 肠炎沙门氏菌 | 破坏细胞壁的LPS而使之发生渗透作用,进一步使ATP从细胞质流出 | [34] |
Galangin | / | S. aureus | 通过过氧化氢途径破坏细胞质膜 | [35] |
槲皮素和芹菜素 | 黄酮和黄醇酮 | 幽门螺杆菌和大肠杆菌 | 可以抑制D-丙氨酸-D-丙氨酸连接酶活性而抑制细胞壁的合成 | [36] |
黄烷酮 | 黄烷酮 | 粪肠球菌 | 通过抑制FabG等关键代谢酶的合成而抑制细胞膜的合成 | [37] |
茶多酚等 | 黄酮醇 | 阪崎慢杆菌 | SEM和TEM显示其使得菌株胞内碱性磷酸酶等对生理具有重要意义的物质泄漏,导致细胞形态形成不可逆转的损伤 | [38] |
北欧浆果提取物 | / | 幽门螺杆菌和蜡状芽孢杆菌 | 通过与细菌外模的二价阳离子结合使得细胞壁出现凹陷坍塌等现象导致细胞壁的完整性被破坏 | [39] |
[1] | Feng Yajing, Zhang Yuanyuan. Antibacterial mechanism and effect of schisandra lignans on Escherichia coli [J]. Food and Fermentation Industries, 2016, 42(2) : 72-76. |
[2] |
Wang Meng, Ren Xiaoliang, Gao Xiumei, et al. Stability of active ingredients of traditional Chinese medicine (TCM)[J]. Natural Product Communications, 2009, 4(12) : 1761-1776.
pmid: 20120121 |
[3] | Sarbu L G, Bahrin L G, Babii C, et al. Synthetic flavonoids with antimicrobial activity: a review[J]. Journal of Applied Microbiology, 2019, 127(5). |
[4] |
Grange J M, Davey R W. Antibacterial properties of propolis (bee glue)[J]. Journal of the Royal Society of Medicine, 1990, 83(3) : 159.
pmid: 2182860 |
[5] | Zhang Yanchao, Liu Shuai, Wang Chuntian. Health function and application prospect of propolis flavonoids[J]. Gansu Animal Husbandry and Veterinary, 2017, 47(6) : 22-23. |
[6] | Cheng Xiatan, Kevin K S, Ikhlas A K, et al. Activities of wogonin analogs and other flavones against flavobacterium columnare[J]. Chemistry & Biodiversity, 2015, 12(2). |
[7] | Zhong Yike, Wu Di, Hua Xiaodan, et al. Progress in the study of antibacterial effect of avonoids compounds[J]. China Food Additives, 2019, 30(8) : 166-171. |
[8] | Liu Ting, Liu Fang, Chen Liang, et al. Research progress of plant flavonoids in the application of cosmetics[J]. Guangdong Chemical Industry, 2020, 47(9) : 105-107. |
[9] | Chen Mingshun, Zhao Zhengang, Meng Hecheng, et al. The antibiotic activity and mechanisms of sugar beet (Beta vulgaris) molasses polyphenols against selected food-borne pathogens[J]. LWT-Food Science and Technology, 2017. |
[10] | Chibane L B, Degraeve P D, Ferhout H, et al. Plant antimicrobial polyphenols as potential natural food preservatives[J]. Journal of the Science of Food and Agriculture, 2018. |
[11] | Hu Yunxia, Fan Jinling, Wu Tao. Classification and bioactivity mechanism of flavonoids[J]. Journal of Zaozhuang University, 2014, 31(2) : 72-78. |
[12] | Xu Zhuo, Li Haotian, Qin Xuhua, et al. Antibacterial evaluation of plants extracts against ampicillin-resistant Escherichia coli (E. coli) by microcalorimetry and principal component analysis[J]. AMB Express, 2019, 9(1). |
[13] | François S, Charles G, Jean L, et al. Structure elucidation of anti-methicillin resistant Staphylococcus aureus (MRSA) flavonoids from balsam poplar buds[J]. Bioorganic & Medicinal Chemistry, 2016, 24(18). |
[14] |
Ju Jian, Qiao Yu, Zhou Wenxing, et al. Flash extraction and antibacterial effects of total avonoids from corn silk[J]. Food Science and Technology, 2016, 41(3) : 208-212.
doi: 10.1590/fst.15120 |
[15] |
Rukayadi Y, Lee K, Han S, et al. In vitro activities of panduratin A against clinical Staphylococcus strains[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(10) : 4529-4532.
doi: 10.1128/AAC.00624-09 pmid: 19651906 |
[16] |
Mbaveng A T, Ngameni B, Kuete V, et al. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae)[J]. Journal of Ethnopharmacology, 2008, 116(3) : 483-489.
doi: 10.1016/j.jep.2007.12.017 |
[17] | Zhang Chunhong, Yang Yue, Xu Ning, et al. A study on antimicrobial activities of actinidia arguta total flavones[J]. Food Industry, 2012, 33(1) : 113-115. |
[18] | Chen Guoni. Study on extraction process and antibacterial activity on flavonoids from purslane[D]. Xi’an Polytechnic University, 2016. |
[19] | Rashid F, Mahmood A, Ifzal R, et al. Flavonoids of prunus armeniaca and their antibacterial studies[J]. Journal of the Chemical Society of Pakistan, 2013, 35(3):905-910. |
[20] |
Wu Ting, He Mengying, Zang Xixi, et al. A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect[J]. Biochimica Et Biophysica Acta Biomembranes, 2013, 1828(11) : 2751-2756.
doi: 10.1016/j.bbamem.2013.07.029 |
[21] |
Wu Ting, Zang Xixi, He Mengying, et al. Y. structure- activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase[J]. Agric. Food Chem., 2013, 61(34) : 8185-8190.
doi: 10.1021/jf402222v |
[22] |
Suresh B K, Hari B T, Srinivas P V, et al. Synjournal and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents[J]. Bioorg. Med. Chem. Lett., 2006, 16(1) : 221-224.
pmid: 16213726 |
[23] |
Yin Sheng, Fan Chengqi, Wang Ying, et al. Antibacterial prenylflavone derivatives from Psoralea corylifolia, and their structure-activity relationship study[J]. Bioorg. Med. Chem., 2004, 12(16) : 4387-4392.
doi: 10.1016/j.bmc.2004.06.014 |
[24] |
Sohn H Y, Son K H, Kwon C S, et al. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: morus alba L., morus mongolica schneider, broussnetia papyrifera (L.) vent, sophora flavescens ait and echinosophora koreensis nakai[J]. Phytomedicine (Jena), 2004, 11:666-672.
doi: 10.1016/j.phymed.2003.09.005 |
[25] |
Suresh B K, Hari B T, Srinivas P V, et al. Synjournal and in vitro study of novel 7-O-acyl derivatives of Oroxylin A as antibacterial agents[J]. Bioorg. Med. Chem. Lett., 2005, 15(17) : 3953-6.
pmid: 16046127 |
[26] |
Li Huanqiu, Shi Lei, Li Qiangshan, et al. Synjournal of C (7) modified chrysin derivatives designing to inhibit β-ketoacyl-acyl carrier protein synthase III (FabH) as antibiotics[J]. Bioorg. Med. Chem., 2009, 17(17) : 6264-6269.
doi: 10.1016/j.bmc.2009.07.046 |
[27] |
Liu Rui, Zhao Bin, Wang Dongen, et al. Nitrogen-containing apigenin analogs: preparation and biological activity[J]. Molecules, 2012, 17(12) : 14748-14764.
doi: 10.3390/molecules171214748 pmid: 23519250 |
[28] |
Xiao Jinbo, Kai Guoyin, Yamamoto K, et al. Advance in dietary polyphenols as glucosidases inhibitors: A review on structure- activity relationship aspect[J]. Critical Reviews in Food Science and Nutrition, 2013, 53(8), 818-836.
doi: 10.1080/10408398.2011.561379 |
[29] |
Suksamrarn A, Chotipong A, Suavansri T, et al. Antimycobacterial activity and cytotoxicity of flavonoids from the flowers of Chromolaena odorata[J]. Arch. Pharm. Res., 2004, 27(5) : 507-511.
pmid: 15202555 |
[30] | Cushnie T P T, Lamb A J. Recent advances in understanding the antibacterial properties of flavonoids[J]. International Journal of Antimicrobial Agents, 2011, 38(2). |
[31] | Li Yingqiu, Han Qing, Feng Jianling, et al. Antibacterial characteristics and mechanisms of ɛ-poly-lysine against Escherichia coli and Staphylococcus aureus [J]. Food Control, 2014, 43. |
[32] | Wang Haitao. Study on antibacterial activity and mechanism of soybean isoflavones[D]. Dalian: Liaoning Normal University, 2009. |
[33] | Chen Yan, Sun Xiaohong, Cao Yi, et al. Research progress on antibacterial activity of blueberry[J]. Research and Development of Natural Products, 2013, 25(5) : 716-721. |
[34] | Stapleton P D, Shah S, Anderson J C, et al. Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates[J]. International Journal of Antimicrobial Agents, 2004, 23(5). |
[35] | Cushnie T P T, Lamb A J. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss[J]. Journal of Ethnopharmacology, 2005, 101. |
[36] | Wu Dalei, Kong Yunhua, Han Cong, et al. D-alanine ligase as a new target for the flavonoids quercetin and apigenin[J]. International Journal of Antimicrobial Agents, 2008, 32(5). |
[37] | Jeong K W, Lee J Y, Kang D, et al. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis[J]. Journal of Natural Products, 2009, 72(4). |
[38] | Li R, Fei P, Man C X, et al. Tea polyphenols inactivate Cronobacter sakazakii isolated from powdered infant formula[J]. Journal of Dairy Science, 2016, 99(2). |
[39] | Nohynek L J, Alakomi H L, Kähkönen M P, et al. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens[J]. Nutrition and Cancer, 2006, 54(1). |
[40] | Peng Fei, Md A A, Gong Shaoying, et al. Antimicrobial activity and mechanism of action of olive oil polyphenols extract against Cronobacter sakazakii[J]. Food Control, 2018. |
[41] | Da X, Nishiyama Y, Tie D, et al. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi[J]. Sci. Rep., 2019, 9(1). |
[42] | Gradisar H, Pristovsek P, Plaper A, et al. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site[J]. Journal of Medicinal Chemistry, 2007, 50(2). |
[43] | Chung E Y, Byun Y H, Shin E J, et al. Antibacterial effects of vulgarone B from artemisia iwayomogi alone and in combination with oxacillin[J]. Archives of Pharmacal Research, 2009, 32(12). |
[44] | Cao Zengmei. Study on extraction, separation and fresh-keeping application of polyphenols from guava[D]. Zhanjiang: Guangdong Ocean University, 2013. |
[45] | Wang Xiaoying, Liu Changjiao, Duan Lianhai, et al. Application of total flavonoid extract of dandelion in coating preservation of chilled pork[J]. Food Science, 2014, 35(6) : 214-218. |
[46] | Gu Caiqin, Zhu Dongxue, Qiu Wenting, et al. Study on the fresh-keeping effect of banana peel flavonoid-propionic acid compound on pork[J]. Meat Research, 2011, 25(11) : 43-46. |
[47] | Yang Zijia, Zhu Jun. Functional components of flos lonicerae and its application in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2013, 43(11) : 28-31. |
[48] | Liu I X, Durham D G, Richards R M. Baicalin synergy with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other β-lactam-resistant strains of S. aureus[J]. The Journal of Pharmacy and Pharmacology, 2000, 52(3). |
[1] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[2] | 杲款款, 杨素珍, 韩婷婷, 李燕, 袁春颖, 毛欣宇. 王浆酸及其护肤功效的研究进展[J]. 日用化学工业(中英文), 2024, 54(2): 209-215. |
[3] | 孙锦月, 何聪芬. 网络药理学研究现状及在化妆品领域应用展望[J]. 日用化学工业(中英文), 2023, 53(9): 1087-1093. |
[4] | 熊洁, 杨丹, 孟宏, 何一凡, 裴晓静. 阿魏酸皮肤生理作用及其化妆品包载技术研究进展[J]. 日用化学工业(中英文), 2023, 53(9): 1073-1079. |
[5] | 张婉萍, 盖厚辰, 张冬梅, 蒋汶, 朱广用. 环糊精包埋技术研究进展及其在化妆品原料包埋中的应用[J]. 日用化学工业(中英文), 2023, 53(7): 808-815. |
[6] | 朱海荣, 孙胜敏, 张娟, 刘爽, 刘倩倩, 邹惠玲. 化妆品中防腐剂的应用现状及检测技术研究进展[J]. 日用化学工业(中英文), 2023, 53(6): 679-685. |
[7] | 孟宪瑶, 程一丹, 郭苗苗, 凌霄, 虞旦, 李丽. 西藏特色植物资源在化妆品中的研究与应用[J]. 日用化学工业(中英文), 2023, 53(6): 698-705. |
[8] | 亓国锋, 李刚刚, 安晏. 酶水解法制备黄芪素及应用研究[J]. 日用化学工业(中英文), 2023, 53(5): 544-550. |
[9] | 王小康, 陈文, 张太军, 尹志刚, 古玉龙, 李涛. 植物甾醇(酯)的研究与应用前景[J]. 日用化学工业(中英文), 2023, 53(4): 445-452. |
[10] | 孙晓曼, 孟宪瑶, 周雯, 郭苗苗, 凌霄, 李丽. 云南特色植物资源在化妆品中的研究与应用[J]. 日用化学工业(中英文), 2023, 53(12): 1459-1465. |
[11] | 张倩洁, 单子悦, 张冬梅, 蒋汶, 张婉萍. 刺激响应型聚合物乳化剂的研究进展[J]. 日用化学工业(中英文), 2023, 53(11): 1305-1314. |
[12] | 何小玲, 马艳, 邓星, 陆嘉莉, 吴荣荣, 龙梅. 异噻唑啉酮类防腐剂标准现状及检测技术研究进展[J]. 日用化学工业(中英文), 2023, 53(10): 1186-1193. |
[13] | 王春玉, 王惠娟, 范世强, 刘杨. 木质素纳米粒子的功能化应用研究进展[J]. 日用化学工业(中英文), 2023, 53(1): 92-99. |
[14] | 林铌,罗飞亚,曹春然,胡宇驰. 基于in vitro和in silico技术的化学品眼刺激性评价替代方法研究[J]. 日用化学工业, 2022, 52(9): 1016-1022. |
[15] | 于昕琪,隋振全,徐桂云,范金石. 常用化妆品成型技术(Ⅲ)——液固飞扬:气雾剂和喷雾剂[J]. 日用化学工业, 2022, 52(9): 930-936. |
|