日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (6): 687-699.doi: 10.3969/j.issn.2097-2806.2025.06.002
收稿日期:
2025-04-04
修回日期:
2025-05-24
出版日期:
2025-06-22
发布日期:
2025-07-01
基金资助:
Hongsheng Lu1,*(),Yang Yang1,Yang Wu1,Xiangyang Yan2,Bo Lin2
Received:
2025-04-04
Revised:
2025-05-24
Online:
2025-06-22
Published:
2025-07-01
Contact:
E-mail: 摘要:
煤层气作为重要的非常规天然气资源,其高效开发对改善能源结构和减少温室气体排放具有重要意义。文章系统综述了促解吸剂技术在煤层气开发中的研究进展与挑战,重点探讨了物理置换、化学竞争吸附、润湿性调控及热力学协同等多种作用机理。结果表明,物理置换类促解吸剂通过竞争吸附占据煤基质活性位点,增强甲烷解吸效率;表面活性剂等化学药剂通过重构气-液-固界面作用,降低毛细管阻力并优化孔隙流体分布;润湿性调控技术则通过改变煤岩表面亲疏水性,削弱甲烷与煤基质的结合强度。此外,热力学协同机制通过温度、压力与孔隙结构的动态演变,系统提升解吸动力学效率。然而,煤层非均质性、化学剂长期滞留风险及储层条件下工作液对煤岩作用机制不明等问题仍制约促解吸技术发展。未来研究需聚焦多因素耦合模型的构建、智能响应材料的开发及CO2封存与甲烷增采的一体化技术,推动煤层气开发向绿色化、精准化方向转型。
中图分类号:
鲁红升, 杨阳, 吴洋, 严向阳, 林波. 煤层气促解吸剂作用机理研究进展[J]. 日用化学工业(中英文), 2025, 55(6): 687-699.
Hongsheng Lu, Yang Yang, Yang Wu, Xiangyang Yan, Bo Lin. Advances in desorption-enhancing mechanisms for coalbed methane desorption agents[J]. China Surfactant Detergent & Cosmetics, 2025, 55(6): 687-699.
表 1
常见的吸附理论模型"
模型名称 | 表达式 | 适用条件 |
---|---|---|
Langmuir等温吸附模型[ | 均质煤微孔中单分子层吸附,吸附位点能量均匀分布,吸附质分子间无横向作用,适用于低压至中压气体吸附平衡态 | |
Langmuir修正模型[ | 均质煤固-液界面单分子层吸附,吸附解吸可逆,含水饱和度超过15% | |
Langmuir-Freundlich等温吸附 模型[ | 非均匀孔隙中的超临界吸附,高温、高压条件 | |
多层吸附模型[ | $\frac{P}{V(\begin{array}{c}P_0-P\end{array})}=\frac{1}{CV_\mathrm{m}}+\frac{C-1}{CV_\mathrm{m}}\times\frac{P}{P_0}$ | 非均质孔中固气界面产生的多层吸附,吸附分子间存在范德华力,吸附层位互不影响 |
Rubinin和Radushkevich模型[ | $ V=V_{0} \exp \left[-\left(\frac{R T}{\beta E} \ln \frac{P_{0}}{P}\right)^{2}\right]$ | 固体表面存在吸附势场,吸附层密度与距离固体表面有关,适用于孔径<2 nm的低温高压吸附行为分析 |
表 2
不同促解吸剂对比分析结果"
促解吸剂分类 | 具体类型 | 成本 | 用量 | 适用条件 | 特点 |
---|---|---|---|---|---|
物理置 换型 | CO2 | 较高(需高温高压设备) | 用量大 | 中高渗透率煤层,兼具碳封存需求的深部高压储层 | 超临界态高扩散性,兼具甲烷置换与CO2封存双重功能;适配超临界储层条件,需配套高温高压设备 |
N2 | 较高(需配套相关设备) | 中等用量 | 非均质储层,需避免气窜风险 | 通过分压稀释和宏观气相驱替作用;见效快,长期滞留风险低,适合短期产能提升 | |
烟道气(CO2/N2混 合气) | 低(工业副 产品) | 混合比例15%~ 30% CO2 | 邻近工业区的煤层,需预处理酸性杂质 | 低成本资源化利用,混合气体协同吸附竞争与气相驱替,适配非均质储层 | |
天然气(CH4) | 中等(回注 成本) | 循环注气 | 低压气藏二次开发 | 增压回注恢复储层压力,适合枯竭气藏产能恢复,但需气源保障 | |
化学竞争吸附型 | 表面活性剂 | 低 | 0.1%~0.5% (w/%) | 含水高或微孔发育煤层,受矿化度影 响大 | 重构气-液-固界面,降低毛细管阻力;亲水/疏水基团定向排列,但水质矿化度高时易失效 |
离子液体 | 高(合成复杂) | 低用量(高效 吸附) | 深层或高附加值气田 | 离子交换竞争吸附位点,耐高温高压;合成工艺复杂但环境兼容 性好 | |
氧化剂(如H2O2) | 中等 | 需控制浓度 | 有机质含量高的煤储层,高阶煤效果差 | 芬顿反应生成自由基氧化煤基质,破坏吸附位点;可能引发硫化物副产物风险 | |
酸液体系 | 中等(需防 腐蚀) | 根据矿物含量 调整 | 高灰分煤层,需规避黄铁矿区域 | 溶蚀碳酸盐扩大孔隙喉道,适配高灰分储层;需规避FeS2以避免H2S生成 | |
纳米流体(SiO2等) | 较高 | 低用量(需防 团聚) | 致密煤层,需解决颗粒分散问题 | 纳米颗粒表面修饰抑制甲烷吸附;孔隙填充效应显著,但易团聚堵塞孔隙 | |
润湿改 性型 | 表面活性剂 | 低 | 0.1%~0.5% (w/%) | 浅层、低矿化度煤层 | 静电作用结合高价金属离子,破坏疏水膜;快速润湿反转但耐盐 性差 |
纳米乳液 | 较高 | 需优化注入工艺 | 低渗透、高含水煤层,如沁水盆地 | 液滴抗剪切性强,布朗运动穿透微孔喉;SiO2颗粒增强热稳定性,适配高温储层 | |
高分子聚合物 | 中等 | 需严格控制浓度 | 渗透率较高、含水适中的储层 | 长链吸附形成稳定润湿层,作用持久;需避免浓度过高导致孔隙 堵塞 | |
热力学协同型 | 氧化钙-氧化镁复合 | 中等 | 根据储层能量需求调整 | 中深层低温储层,煤体结构完整区域 | 强放热反应快速加热储层;适配闭合压力高区域,热作用半径有限 |
铝基热化学体系 | 高 | 大用量(高温设备支持) | 低渗构造煤储层,需配套高温工具 | 高温反应(>300 ℃)扩展渗流通道;需配套耐高温井筒工具,成本较高但长效性佳 | |
硝酸铵基复合 | 中等(环保 风险) | 需平衡能量与解吸动力 | 低压储层,需控制副产气体 | 吸热(NH4NO3分解)与放热反应耦合调控温度;副产物需环境风险防控 | |
相变储热材料 | 较高 | 持续释热(低 维护) | 中高渗储层,卤水发育区需耐盐配方 | 相变潜热持续释热;热传导效率依赖纳米流体协同,矿化度敏感 |
[1] | 张嘉琪, 刘曾勤, 申宝剑, 等. 国内外深层煤层气勘探开发进展与启示[J]. 石油实验地质, 2025, 47 (1) : 1-8. |
[2] |
徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50 (4) : 669-682.
doi: 10.11698/PED.20220856 |
[3] |
康永尚, 闫霞, 皇甫玉慧, 等. 深部超饱和煤层气藏概念及主要特点[J]. 石油学报, 2023, 44 (11) : 1781-1790.
doi: 10.7623/syxb202311003 |
[4] | 刘晓茜, 光文峰, 窦浩然. 基于低场核磁共振原位监测的煤岩甲烷吸附解吸动力学研究[J]. 实验技术与管理, 2024, 41 (9) : 7-14. |
[5] |
刘争, 孙宝江, 王志远, 等. 海域天然气水合物降压开采压力控制及气液流动特性[J]. 石油学报, 2022, 43 (8) : 1173-1184.
doi: 10.7623/syxb202208011 |
[6] | 姚红生, 陈贞龙, 何希鹏, 等. 深部煤层气“有效支撑”理念及创新实践——以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业, 2022, 42 (6) : 97-106. |
[7] | 张懿, 朱光辉, 郑求根, 等. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气, 2022, 9 (4) : 1-8, 45. |
[8] | 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51 (1) : 115-130. |
[9] | Moore T A. Coalbed methane: A review[J]. International Journal of Coal Geology, 2012, 101: 36-81. |
[10] | 贾东旭. 表面活性剂对煤的润湿性与瓦斯解吸性能的影响研究[J]. 煤矿安全, 2025, 56 (2) : 23-32. |
[11] | 刘军, 杨通, 王立国, 等. 煤层水锁效应的消除及其对甲烷解吸特性的影响[J]. 煤炭科学技术, 2022, 50 (9) : 82-92. |
[12] | Liang Weiguo, Yan Jiwei, Zhang Beining, et al. Review on coal bed methane recovery theory and technology: recent progress and perspectives[J]. Energy & Fuels, 2021, 35 (6) : 4633-4643. |
[13] |
邹才能, 林敏捷, 马锋, 等. 碳中和目标下中国天然气工业进展、挑战及对策[J]. 石油勘探与开发, 2024, 51 (2) : 418-435.
doi: 10.11698/PED.20230690 |
[14] | 朱苏阳, 孟尚志, 彭小龙, 等. 煤岩润湿性对煤层气赋存的影响机理[J]. 油气藏评价与开发, 2022, 12 (4) : 580-588, 595. |
[15] | 常广涛, 王一帆, 董特特. 煤层气吸附解吸研究进展综述[J]. 石化技术, 2015 (7) : 125-126. |
[16] | 刘曰武, 苏中良, 方虹斌, 等. 煤层气的解吸/吸附机理研究综述[J]. 油气井测试, 2010, 19 (6) : 37-44, 83. |
[17] | 唐书恒, 汤达祯, 杨起. 二元气体等温吸附-解吸中气分的变化规律[J]. 中国矿业大学学报, 2004, 33 (4) : 86-90. |
[18] | 蔺金太, 郭勇义, 吴世跃. 煤层气注气开采中煤对不同气体的吸附作用[J]. 太原理工大学学报, 2001, 32 (1) : 18-20. |
[19] |
李相方, 蒲云超, 孙长宇, 等. 煤层气与页岩气吸附/解吸的理论再认识[J]. 石油学报, 2014, 35 (6) : 1113-1129.
doi: 10.7623/syxb201406009 |
[20] | 杨建, 詹国卫, 赵勇, 等. 川南深层页岩气超临界吸附解吸附特征研究[J]. 油气藏评价与开发, 2021, 11 (2) : 50-55, 62. |
[21] | 钟光海, 李跃纲, 李生杰. 基于改进的BET多层吸附模型的深层页岩吸附气含量测井评价方法[J]. 测井技术, 2024, 48 (1) : 84-93. |
[22] | 刘大锰, 刘正帅, 蔡益栋. 煤层气成藏机理及形成地质条件研究进展[J]. 煤炭科学技术, 2020, 48 (10) : 1-16. |
[23] | Nandi S P, Walker Jr P L. Activated diffusion of methane from coals at elevated pressures[J]. Fuel, 1975, 54 (2) : 81-86. |
[24] | Pan Z, Connell L D, Camilleri M, et al. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel, 2010, 89 (11) : 3207-3217. |
[25] | Ruckenstein E, Vaidyanathan A S, Youngquist G R. Sorption by solids with bidisperse pore structures[J]. Chemical Engineering Science, 1971, 26 (9) : 1305-1318. |
[26] | Li Zhentao, Liu Dameng, Cai Yidong, et al. Investigation of methane diffusion in low-rank coals by a multiporous diffusion model[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 97-107. |
[27] | 李志强, 王登科, 宋党育. 新扩散模型下温度对煤粒瓦斯动态扩散系数的影响[J]. 煤炭学报, 2015, 40 (5) : 1055-1064. |
[28] | Yue Gaowei, Wang Zhaofeng, Xie Ce, et al. Time-dependent methane diffusion behavior in coal: measurement and modeling[J]. Transport in Porous Media, 2017, 116: 319-333. |
[29] | 刘永茜, 张浪, 李浩荡, 等. 含水率对煤层气渗流的影响[J]. 煤炭学报, 2014, 39 (9) : 1840-1844. |
[30] | 朱雷. 煤层气渗流机理及影响因素研究[J]. 中国石油和化工标准与质量, 2021, 41 (20) : 123-124, 128. |
[31] | 胡千庭, 刘继川, 李全贵, 等. 煤层分段水力压裂渗流诱导应力场的数值模拟[J]. 采矿与安全工程学报, 2022, 39 (4) : 761-769. |
[32] | 王登科, 房禹, 魏建平, 等. 基于深度学习的煤岩Micro-CT裂隙智能提取与应用[J]. 煤炭学报, 2024, 49 (8) : 3439-3452. |
[33] | 李可心, 张聪, 李俊, 等. 沁水盆地南部煤层气水平井射孔优化[J]. 新疆石油地质, 2024, 45 (5) : 581-589. |
[34] | 黄林岗, 林凌, 罗文嘉. 煤层气中甲烷扩散及水锁效应的分子动力学研究[J]. 煤炭学报, 2023, 48 (11) : 4124-4134. |
[35] | 涂乙, 谢传礼, 李武广, 等. 煤层对CO2、CH4和N2吸附/解吸规律研究[J]. 煤炭科学技术, 2012, 40 (2) : 70-72, 93. |
[36] | 尉瑞, 宋鑫, 廉振山, 等. CH4, CO2和N2及其多元气体在不同煤阶中吸附特性实验研究[J]. 煤炭技术, 2022, 41 (10) : 129-134. |
[37] | 王铭明, 汪晨, 于浩, 等. 不同温度下煤样氧化热解气体产物在煤中吸附特性的实验研究[J]. 煤炭学报, 2020, 45 (S1) : 284-290. |
[38] | Fu Zhihao, Jia Baoshan, Wang Yanming. Study on the microscopic mechanism of CO2 injection for CH4 displacement in coal seams based on molecular simulation[J]. The Journal of Physical Chemistry C, 2024, 128 (31) : 13362-13372. |
[39] | 龙泳翰, 张磊, 李菁华, 等. 注气驱替机理研究现状及展望[J]. 矿业安全与环保, 2023, 50 (1) : 103-108, 114. |
[40] | Xu Chao, Wang Weijing, Wang Kai, et al. Molecular dynamics study of CH4 storage and flow characteristics in non-homogeneous pore structures of coals with different morphologies[J]. International Journal of Heat and Mass Transfer, 2025, 240: 126587. |
[41] | 刘操, 闫江伟, 赵春辉, 等. 煤中超临界CO2解吸滞后机理及其对地质封存启示[J]. 煤炭学报, 2024, 49 (7) : 3154-3166. |
[42] | 汪伟英, 田中兰, 杨林江, 等. 表面活性剂对煤岩润湿性及相对渗透率的影响[J]. 长江大学学报(自科版), 2015, 12 (2) : 79-82, 7. |
[43] | 张亦雯, 郭红光, 李亚平, 等. 过氧化氢预处理中/高煤阶煤增产生物甲烷研究[J]. 煤炭科学技术, 2019, 47 (9) : 262-267. |
[44] |
Zheng Chunshan, Liu Shuaili, Han Feilin, et al. Experimental investigation of the effect of microstructure on coalbed methane adsorption characteristics affected by chemical solvents[J]. Langmuir, 2025, 41 (1) : 774-786.
doi: 10.1021/acs.langmuir.4c04081 pmid: 39741432 |
[45] | Pan Bin, Ni Teng, Zhu Weiyao, et al. Mini review on wettability in the methane-liquid-rock system at reservoir conditions: Implications for gas recovery and geo-storage[J]. Energy & Fuels, 2022, 36 (8) : 4268-4275. |
[46] |
Xie Zhixuan, Liu Shengyu. Interface mechanism of promoting low-rank coal flotation by characteristic groups in hydrophilic moieties of cationic-anionic surfactants[J]. Langmuir, 2025, 41 (2) : 1502-1518.
doi: 10.1021/acs.langmuir.4c04774 pmid: 39783821 |
[47] | 季亮, 王伟, 杨宏涛, 等. 不同表面活性剂对镜煤和暗煤的润湿性影响[J]. 西安科技大学学报, 2024, 44 (1) : 144-154. |
[48] | 孔令坡, 吴艳, 马博文. 非离子表面活性剂疏水尾链构型与低阶煤煤尘润湿性的关系[J]. 洁净煤技术, 2024, 30(S2): 692-697. |
[49] |
Ding Nan, Si Leilei, Wei Jianping, et al. Study on coal wettability under different gas environments based on the adsorption energy[J]. ACS Omega, 2023, 8 (24) : 22211-22222.
doi: 10.1021/acsomega.3c02645 pmid: 37360500 |
[50] | Xu Lianman, Li Yajing, Du Linlin, et al. Study on the effect of SDBS and SDS on deep coal seam water injection[J]. Science of the Total Environment, 2023, 856: 158930. |
[51] | Zhang Jianwei, Liang Mengna, Zhang Chaoqi, et al. Study on the preparation of amphiphilic coal rock-cement interface enhancer and the interface strengthening mechanism[J]. Alexandria Engineering Journal, 2025, 114: 404-418. |
[52] | Cui Chao, Yao Yanbin, Liu Dameng, et al. Coal-fluid interfacial tension in the coal-water-CO2 system: implications for CO2 sequestration in coal seams[J]. Energy & Fuels, 2024, 38 (12) : 10801-10812. |
[53] | 石钰, 阳梦, 李树刚, 等. 纳米颗粒复合表面活性剂对煤中CH4吸附/解吸和扩散的影响[J]. 煤炭学报, 2023, 48 (8) : 3116-3127. |
[54] | 袁梅, 李照平, 李波波, 等. 酸化对煤微观结构及煤层气解吸-扩散的影响[J]. 天然气工业, 2022, 42 (6) : 163-172. |
[55] | Tang Zongqing, Yang Shengqiang, Xu Guang, et al. Investigation of the effect of low-temperature oxidation on extraction efficiency and capacity of coalbed methane[J]. Process Safety and Environmental Protection, 2018, 117: 573-581. |
[56] |
Heng Xianwei, Li Hongsheng, Li Qingsong, et al. Investigation of an adsorption model of wet coal that considers coal seam gas pressure and temperature effects[J]. ACS Omega, 2025, 10 (6) : 5634-5644.
doi: 10.1021/acsomega.4c08703 pmid: 39989813 |
[57] | 王金鑫, 周动, 冯雪健, 等. 煤的非均匀势阱分布及其对甲烷吸附/解吸的影响[J]. 煤炭学报, 2023, 48 (10) : 3818-3830. |
[58] | Wang Ling, Wang Bo, Zhu Jintuo, et al. Experimental study on alleviating water-blocking effect and promoting coal gas desorption by gas wettability alteration[J]. Journal of Natural Gas Science and Engineering, 2022, 108: 104805. |
[59] |
Chen Xinyi, Shi Bin, Cao Yunxing, et al. Study on the wettability and methane desorption characteristics of coal under high pressure with different surfactants[J]. ACS Omega, 2024, 9 (18) : 20012-20020.
doi: 10.1021/acsomega.3c09941 pmid: 38737061 |
[60] | Wei Xiaorong, Massarotto P, Wang Geoff, et al. CO2 sequestration in coals and enhanced coalbed methane recovery: New numerical approach[J]. Fuel, 2010, 89 (5) : 1110-1118. |
[61] | Su Linan, Wang Qian, Wang Xiaoming. The experimental study on multiple mechanisms of enhanced CBM recovery by autogenous nitrogen fracturing fluid[J]. Geoenergy Science and Engineering, 2024, 241: 213178. |
[62] | Fan Nan, Wang Jiren, Deng Cunbao, et al. Numerical study on enhancing coalbed methane recovery by injecting N2/CO2 mixtures and its geological significance[J]. Energy Science & Engineering, 2020, 8 (4) : 1104-1119. |
[63] | Fan Zhanglei, Fan Ganwei, Zhang Dongsheng, et al. Optimal injection timing and gas mixture proportion for enhancing coalbed methane recovery[J]. Energy, 2021, 222: 119880. |
[64] | Liang Xiaoming, Kang Tianhe, Kang Jianting, et al. Experimental study of influence of natural organic solvent limonene on methane adsorption-desorption behaviors of selected rank coals[J]. Energy, 2024, 291: 130491. |
[65] | Qi Yufei, Tian Lin, Cao Yunxing, et al. Effect of surfactant modification on coalbed methane desorption and its behavioral mechanism[J]. Energy & Fuels, 2024, 38 (15) : 14235-14245. |
[66] | Zhao Li, Ni Guanhua, Sun Lulu, et al. Effect of ionic liquid treatment on pore structure and fractal characteristics of low rank coal[J]. Fuel, 2020, 262: 116513. |
[67] |
Pan Rongkun, Li Cong, Fu Dong, et al. The study on oxidation characteristics and spontaneous combustion micro-structure change of unloading coal under different initial stress[J]. Combustion Science and Technology, 2020, 192 (6) : 1053-1065.
doi: 10.1080/00102202.2019.1608976 |
[68] | Lu Jiexin, Zheng Chunshan, Liu Wuche, et al. Evolution of the pore structure and fractal characteristics of coal under microwave-assisted acidification[J]. Fuel, 2023, 347: 128500. |
[69] |
Wang Lan, Li Zhiping, Mao Gangtao, et al. Effect of nanoparticle adsorption on the pore structure of a coalbed methane reservoir: a laboratory experimental study[J]. ACS Omega, 2022, 7 (7) : 6261-6270.
doi: 10.1021/acsomega.1c06770 pmid: 35224388 |
[70] | Lin Dantong, Tang Minpeng, Zhang Baoqing, et al. Coupled clogging and colloid retention mechanisms in porous media: Insights from Pore-Network modeling[J]. Separation and Purification Technology, 2025: 132055. |
[71] |
Torkzaban S, Bradford S A, Vanderzalm J L, et al. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity[J]. Journal of Contaminant Hydrology, 2015, 181: 161-171.
doi: 10.1016/j.jconhyd.2015.06.005 pmid: 26141344 |
[72] | Wang Ziwei, Liu Shimin, Qin Yong. Coal wettability in coalbed methane production: A critical review[J]. Fuel, 2021, 303: 121277. |
[73] | Kim S, Ko D, Mun J, et al. Techno-economic evaluation of gas separation processes for long-term operation of CO2 injected enhanced coalbed methane (ECBM)[J]. Korean Journal of Chemical Engineering, 2018, 35: 941-955. |
[74] | Jia Lin, Li Kewen, Zhou Jianbin, et al. Experimental study on enhancing coal-bed methane production by wettability alteration to gas wetness[J]. Fuel, 2019, 255: 115860. |
[75] | Zan Yang, Wu Yang, Ran Dongsheng, et al. Nano-emulsion stabilized by multiple surfactants: An effective alternative for enhancing coal seam water injection effect[J]. Journal of Molecular Liquids, 2024, 398: 124150. |
[76] | Wang Zheng, Li He, Shi Shiliang, et al. Evolution of methane adsorption characteristics in coal under N-methylpyrrolidone treatment[J]. Physics of Fluids, 2025, 37 (2). |
[77] | 邵志国, 史志鹏, 许毓, 等. 氧化钙在油基钻屑热脱附中的协同作用[J]. 天然气工业, 2020, 40 (10) : 148-155. |
[78] | Pan Y, Qiao W, ei Chi Dexia, et al. Research of steam injection in-situ production technology to enhance unconventional oil and gas recovery: A review[J]. Journal of Analytical and Applied Pyrolysis, 2024, 177: 106332. |
[79] | Yang Yong, Cao Xiaopeng, Ji Yanfeng, et al. Mechanistic insights into a novel controllable phase-transition polymer for enhanced oil recovery in mature waterflooding reservoirs[J]. Nanomaterials, 2023, 13 (24) : 3101. |
[80] | 徐欣, 徐书奇, 邢悦明, 等. 煤岩孔隙结构分形特征表征方法研究[J]. 煤矿安全, 2018, 49 (3) : 148-150. |
[81] | 李卫波, 李菲, 史利燕, 等. 低阶煤不同宏观煤岩组分孔隙发育特征及甲烷吸附/解吸性能差异[J]. 河南理工大学学报(自然科学版), 2024, 43 (2) : 57-67. |
[82] | 王青青, 孟艳军, 闫涛滔, 等. 不同煤阶煤储层吸附/解吸特征差异及其对产能的影响[J]. 煤田地质与勘探, 2023, 51 (5) : 66-77. |
[83] | 刘世奇, 王鹤, 桑树勋, 等. 无烟煤储层煤层水的相变传质过程及其煤层气开发的工程启示[J]. 煤炭学报, 2023, 48 (8) : 3138-3150. |
[84] |
熊先钺, 闫霞, 徐凤银, 等. 深部煤层气多要素耦合控制机理、解吸规律与开发效果剖析[J]. 石油学报, 2023, 44 (11) : 1812-1826, 1853.
doi: 10.7623/syxb202311005 |
[85] | 翟迎铨, 宋党育, 李云波. 温度压力对煤中甲烷解吸速率影响的试验研究[J]. 煤炭科学技术, 2024, 52(S1): 80-85. |
[86] | 唐明云, 张海路, 段三壮, 等. 基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J]. 煤炭科学技术, 2021, 49 (5) : 182-189. |
[87] | 伊向艺, 吴红军, 卢渊, 等. 不同矿化度水对煤层气解吸-扩散影响的实验[J]. 煤田地质与勘探, 2013 (5) : 33-35. |
[88] | 王凤林, 袁玉, 张遂安, 等. 不同含水及负压条件下煤层气等温吸附解吸规律[J]. 煤炭科学技术, 2019, 47 (6) : 158-163. |
[89] | 郑浩阁, 杨宏民, 陈立伟, 等. 水分对CO2置换煤中甲烷的影响效应研究[J]. 煤矿安全, 2024, 55 (5) : 68-74. |
[90] | 康园园, 杨鹏举, 吕建国, 等. 排水降压开采后地下气化煤层气藏的机理浅析[J]. 中国科技纵横, 2021 (21) : 97-98. |
[91] | Liu Peng, Liu Ang, Zhong Fangxiang, et al. Pore/fracture structure and gas permeability alterations induced by ultrasound treatment in coal and its application to enhanced coalbed methane recovery[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108862. |
[92] | 郭辉, 李想, 曾云, 等. CO2驱提高煤层气开采效果注入参数的实验研究[J]. 当代化工, 2016, 45 (11) : 2585-2588. |
[93] | Tao Shu, Chen Shida, Pan Zhejun. Current status, challenges, and policy suggestions for coalbed methane industry development in China: A review[J]. Energy Science & Engineering, 2019, 7 (4) : 1059-1074. |
[94] | Li Xiangchun, Zhou Changyong, Li Xiaowei, et al. Study on size effect and model optimization of methane desorption-diffusion in high rank coal[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2024, 46 (1) : 6761-6778. |
[95] | Wu Hao, Yao Yanbin, Emmanuel S. Interactive machine learning improves accuracy of coal porosity segmentation in focused ion beam-scanning electron microscopy images[J]. Energy & Fuels, 2023, 37 (14) : 10466-10473. |
[96] | Sun Xiaowei, Wang Hongya, Gong Bin, et al. Investigation into enhancing methane recovery and sequestration mechanism in deep coal seams by CO2 injection[J]. Energies, 2024, 17 (22) : 5659. |
[97] | Wu Qiong, Lin Nengyu, Li Li, et al. Synergistic enhancement of coalbed methane hydration process by magnetic field and NiMnGa micro-nano fluid[J]. Frontiers in Energy Research, 2022, 10: 974647. |
[98] | Wei Xiao, Xia Yingkai, Wei Shuang, et al. Microporous adsorbents for CH4 capture and separation from coalbed methane with low CH4 concentration[J]. Nanomaterials, 2025, 15 (3) : 208. |
[99] | Fan Chaojun, Yang Lei, Sun Hao, et al. Recent advances and perspectives of CO2-enhanced coalbed methane: Experimental, modeling, and technological development[J]. Energy & Fuels, 2023, 37 (5) : 3371-3412. |
[100] | Da Qian, Yao Chuanjin, Zhang Xue, et al. Reservoir damage induced by water-based fracturing fluids in tight reservoirs: a review of formation mechanisms and treatment methods[J]. Energy & Fuels, 2024, 38 (19) : 18093-18115. |
[101] | Yuan Peilong, Jia Ding, Chen Yunteng, et al. A feasibility study on microseismic monitoring of rock burst in traffic tunnels[J]. Polish Journal of Environmental Studies, 2025, 34 (2). |
[102] | Xu Yang, Li Jian, Huang Xin, et al. High-spatial resolution Raman-distributed optical fiber sensing using differential pulsewidth pair detection[J]. IEEE Sensors Journal, 2025, 25 (2) : 2761-2768. |
[103] | Chandna A, Srinivasan S. Mapping natural fracture networks using geomechanical inferences from machine learning approaches[J]. Computational Geosciences, 2022, 26 (3) : 651-676. |
[104] | Wei Chao, Zhang Bo, Li Shucai, et al. Interaction between hydraulic fracture and pre-existing fracture under pulse hydraulic fracturing[J]. SPE Production & Operations, 2021, 36 (3) : 553-571. |
[105] | Liu Jinming, Liu Pingli, Du Juan, et al. Review on high-temperature-resistant viscoelastic surfactant fracturing fluids: state-of-the-art and perspectives[J]. Energy & Fuels, 2023, 37 (14) : 9790-9821. |
[106] | Chawla M, Lavania M, Sahu N, et al. Culture-independent assessment of the indigenous microbial diversity of Raniganj coal bed methane block, Durgapur[J]. Frontiers in Microbiology, 2023, 14: 1233605. |
[107] | Ashley K, Davis K J, Martini A, et al. Deuterium as a quantitative tracer of enhanced microbial methane production[J]. Fuel, 2021, 289: 119959. |
[108] |
Li Yang, Tang Shusheng, Chen Jian, et al. A review on microbial metabolism to increase coalbed methane generation and coal pretreatment to improve its bioavailability[J]. Frontiers of Earth Science, 2023, 17 (1) : 218-229.
doi: 10.1007/s11707-022-1041-y |
No related articles found! |
|