[1] |
Jin Y H, Li A, Hazelton S G, et al. Amorphous silica nanohybrids: Synthesis, properties and applications[J]. Coordination Chemistry Reviews, 2009, 253: 2998-3014.
|
[2] |
Croissant J G, Butler K S, Zink J I, et al. Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications[J]. Nature Reviews Materials, 2020, 5: 886-909.
|
[3] |
Mebert A M, Baglole C J, Desimone M F, et al. Nanoengineered silica: Properties, applications and toxicity[J]. Food and Chemical Toxicology, 2017, 109: 753-770.
doi: S0278-6915(17)30288-0
pmid: 28578101
|
[4] |
Nayl A A, Abd-Elhamid A I, Aly A A, et al. Recent progress in the applications of silica-based nanoparticles[J]. RSC Advances, 2022, 12: 13706-13726.
doi: 10.1039/d2ra01587k
pmid: 35530394
|
[5] |
Santra Swadeshmukul. Fluorescent silica nanoparticles for cancer imaging[J]. Cancer Nanotechnology, 2010, 624: 151-162.
|
[6] |
Ehrhorn E G, Lovell P, Svechkarev D, et al. Optimizing the performance of silica nanoparticles functionalized with a near-infrared fluorescent dye for bioimaging applications[J]. Nanotechnology, 2024, 35: 305605.
|
[7] |
Li Y, Song F X, Guo Y, et al. Multifunctional amine mesoporous silica spheres modified with multiple amine as carriers for drug release[J]. Journal of Nanomaterials, 2018: 1726438.
|
[8] |
Balwierz R, Bursy D, Biernat P, et al. Nano-silica carriers coated by chloramphenicol: Synthesis, characterization, and grinding trial as a way to improve the release profile[J]. Pharmaceuticals, 2022, 15: 703.
|
[9] |
Prihatiningsih M C, Ariyanto T, Putra E G R, et al. Radioiodination of modified porous silica nanoparticles as a potential candidate of iodine-131 drugs vehicle[J]. ACS Omega, 2022, 7: 13494-13506.
doi: 10.1021/acsomega.1c06492
pmid: 35559138
|
[10] |
Qiu P P, Ma B, Hung C T, et al. Spherical mesoporous materials from single to multilevel architectures[J]. Accounts of Chemical Research, 2019, 52: 2928-2938.
doi: 10.1021/acs.accounts.9b00357
pmid: 31536332
|
[11] |
Kosari M, Borgna A, Zeng H C. Transformation of Stöber silica spheres to hollow nanocatalysts[J]. ChemNanoMat, 2020, 6: 889-906.
|
[12] |
Shimogaki T, Tokoro H, Tabuchi M, et al. Large-scale synthesis of monodisperse microporous silica nanoparticles by gradual injection of reactants[J]. Journal of Sol-Gel Science and Technology, 2014, 74: 109-113.
|
[13] |
Stöber W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26: 62-69.
|
[14] |
Ghimire P P, Jaroniec M. Renaissance of Stöber method for synthesis of colloidal particles: New developments and opportunities[J]. Journal of Colloid and Interface Science, 2021, 584: 838-865.
doi: 10.1016/j.jcis.2020.10.014
pmid: 33127050
|
[15] |
Dos S d S A, Dos S J H Z. Stöber method and its nuances over the years[J]. Advances in Colloid Interface Science, 2023, 314: 102888.
|
[16] |
LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. Journal of the American Chemical, 1950, 72: 4847-4854.
|
[17] |
Bogush G H, Tracy M A, IV C F Z. Preparation of monodisperse silica particles: Control of size and mass fraction[J]. Journal of Non-Crystalline Solids, 1988, 104: 95-106.
|
[18] |
Bourebrab M A, Oben D T, Durand G G, et al. Influence of the initial chemical conditions on the rational design of silica particles[J]. The Journal of Sol-Gel Science and Technology, 2018, 88: 430-441.
|
[19] |
Wang J, Sugawara N A, Fukao M, et al. Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly[J]. ACS Applied Materials & Interfaces, 2011, 3: 1538-1544.
|
[20] |
Quan B, Lee C, Yoo J S, et al. Facile scalable synthesis of highly monodisperse small silica nanoparticles using alkaline buffer solution and their application for efficient sentinel lymph node mapping[J]. Journal of Materials Chemistry B, 2017, 5: 586-594.
doi: 10.1039/c6tb02304e
pmid: 32263674
|
[21] |
Guo Q, Yang G Q, Huang D C, et al. Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by slow-hydrolysis catalyst[J]. Colloid and Polymer Science, 2018, 296: 379-384.
|
[22] |
Wang J, Zhang K, Kavak S, et al. Modifying the Stöber process: Is the organic solvent indispensable?[J]. Chemistry, 2023, 29: e202202670.
|
[23] |
Lei X, Yu B, Cong H L, et al. Synthesis of monodisperse silica microspheres by a modified Stöber method[J]. Integrated Ferroelectrics, 2014, 154: 142-146.
|
[24] |
Cheng L P, Cai J F, Ke Y X. Synthesis of large-pore silica microspheres using dodecylamine as a catalyst, template and porogen agent[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29: 1417-1421.
|
[25] |
Teng Z G, Su X D, Zheng Y Y, et al. Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach[J]. Chemistry of Materials, 2012, 25: 98-105.
|
[26] |
Zhang W P, Zhou Q H, Zhang Q J, et al. Preparation and performance of SiO2-nanostructured lipid encapsulating sunscreen[J]. Journal of Dispersion Science and Technology, 2022, 43: 1089-1098.
|
[27] |
Lin Y C, Fang Y P, Hung C F, et al. Multifunctional TiO2/SBA-15 mesoporous silica hybrids loaded with organic sunscreens for skin application: The role in photoprotection and pollutant adsorption with reduced sunscreen permeation[J]. Colloids and Surfaces B: Biointerfaces, 2021, 202: 111658.
|
[28] |
Kandil S M, Diab H M, Mahfoz A M, et al. Duo photoprotective effect via silica-coated zinc oxide nanoparticles and Vitamin C nanovesicles composites[J]. Pharmaceutical Research, 2024, 41: 1475-1491.
doi: 10.1007/s11095-024-03733-y
pmid: 38992234
|
[29] |
Zaccariello G, Back M, Zanello M, et al. Formation and controlled growth of bismuth titanate phases into mesoporous silica nanoparticles: An efficient self-sealing nanosystem for UV filtering in cosmetic formulation[J]. ACS Applied Materials & Interfaces, 2017, 9: 1913-1921.
|
[30] |
Lu Z, Zhang T, Yang J, et al. Effect of mesoporous silica nanoparticles-based nano-fragrance on the central nervous system[J]. Engineering in Life Sciences, 2020, 20: 535-540.
doi: 10.1002/elsc.202000015
pmid: 33204240
|
[31] |
Zhang T L, Lu Z G, Wang J Z, et al. Preparation of mesoporous silica nanoparticle with tunable pore diameters for encapsulating and slowly releasing eugenol[J]. Chinese Chemical Letters, 2021, 32: 1755-1758.
doi: 10.1016/j.cclet.2020.12.033
|
[32] |
Yeom J S, Shim W S, Kang N G. Eco-friendly silica microcapsules with improved fragrance retention[J]. Applied Sciences, 2022, 12: 6759.
|
[33] |
Xiao Z B, Zhang B, Kou X R, et al. High-temperature aroma mitigation and fragrance analysis of ethyl cellulose/silica hybrid microcapsules for scented fabrics[J]. Coatings, 2022, 12: 711.
|
[34] |
Li X K, Wang X R, Wang X, et al. Lignin-decorated SiO2 nanoparticles for skin cleansing applications[J]. ACS Applied Nano Materials, 2024, 7: 2041-2050.
|
[35] |
Soleimani M, Khani A, Dalali N, et al. Improvement in the cleaning performance towards protein soils in laundry detergents by protease immobilization on the silica nanoparticles[J]. Journal of Surfactants and Detergents, 2012, 16: 421-426.
|
[36] |
Salamony D H E, Gayar D A, Mahdy A R, et al. Preparation and characterization of silica nanoparticles as an efficient carrier for two bio-detergents based enzymes[J]. Journal of Surfactants and Detergents, 2023, 26: 577-592.
|
[37] |
Pawliszak P, Malina D, Sobczak-K A. Rhodiola rosea extract mediated green synthesis of silver nanoparticles supported by nanosilica carrier[J]. Materials Chemistry and Physics, 2019, 234: 390-402.
doi: 10.1016/j.matchemphys.2019.05.027
|
[38] |
Chai Q, Wu Q, Liu T, et al. Enhanced antibacterial activity of silica nanorattles with ZnO combination nanoparticles against methicillin-resistant Staphylococcus aureus[J]. Science Bulletin, 2017, 62: 1207-1215.
|
[39] |
Cao C, Ge W, Yin J, et al. Mesoporous silica supported silver-bismuth nanoparticles as photothermal agents for skin infection synergistic antibacterial therapy[J]. Small, 2020, 16: e2000436.
|
[40] |
Khosravian P, Javdani M, Noorbakhnia R, et al. Preparation and evaluation of chitosan skin patches containing mesoporous silica nanoparticles loaded by doxycycline on skin wound healing[J]. Archives of Dermatological Research, 2023, 315: 1333-1345.
|
[41] |
Ma X, Qu Q, Zhao Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy[J]. ACS Applied Materials & Interfaces, 2015, 7: 10671-10676.
|
[42] |
Mahrooqi J H A, Khutoryanskiy V V, Williams A C. Thiolated and PEGylated silica nanoparticle delivery to hair follicles[J]. International Journal of Pharmaceutics, 2021, 593: 120130.
|
[43] |
Lio D C S, Liu C, Oo M M S, et al. Transdermal delivery of small interfering RNAs with topically applied mesoporous silica nanoparticles for facile skin cancer treatment[J]. Nanoscale, 2019, 11: 17041-17051.
doi: 10.1039/c9nr06303j
pmid: 31506653
|
[44] |
Kirillin M, Shirmanova M, Sirotkina M, et al. Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study[J]. The Journal of Biomedical Optics, 2009, 14(2): 021017.
|