[1] |
Chandran Suja V, Kar A, Cates W, et al. Foam stability in filtered lubricants containing antifoams[J]. Journal of Colloid and Interface Science, 2020, 567: 1-9.
|
[2] |
林雪松. 某区块泡沫油形成机理及分布规律研究[D]. 大庆: 东北石油大学, 2018.
|
[3] |
Lombardi Lombardi, Roig Sanchez Soledad, Bapat Amar, et al. Nonaqueous foam stabilization mechanisms in the presence of volatile solvents[J]. Journal of Colloid and Interface Science, 2023, 648: 46-55.
doi: 10.1016/j.jcis.2023.05.156
pmid: 37295369
|
[4] |
Fameau Anne Laure, Saint Jalmes Arnaud. Non-aqueous foams: Current understanding on the formation and stability mechanisms[J]. Advances in Colloid and Interface Science, 2017, 247: 454-464.
doi: S0001-8686(16)30383-9
pmid: 28245904
|
[5] |
胡楠, 胡明明, 李志鑫, 等. 消泡剂的研究进展与展望[J]. 盐科学与化工, 2021, 50: 10-16.
|
[6] |
王敏, 郭睿, 张凯峰, 等. 有机硅消泡剂的合成与应用[J]. 精细化工, 2017, 34: 274-278.
|
[7] |
窦尹辰. 不同结构聚醚改性硅油的制备与消泡性能研究[D]. 西安: 陕西科技大学, 2014.
|
[8] |
J·J·托曼, D·J·奥里尔, G·南斯基维尔, 等. 低起泡蒸馏物燃料调合物: CN200680025838.X[P]. 2008-10-01.
|
[9] |
Cevada Enrique, Fuentes Jessica V, Zamora Edgar Benedicto, et al. Effect of the chemical structure of alkyl acrylates on their defoaming activity in crude oil: experimental and theoretical studies[J]. Energy & Fuels, 2021, 35 (10) : 9047-9058.
|
[10] |
Fraga Assis K, Souza Luiz F I, Magalhães Jeniffer Rayane, et al. Development and evaluation of oil in water nanoemulsions based on polyether silicone as demulsifier and antifoam agents for petroleum[J]. Journal of Applied Polymer Science, 2014, 131 (20) : 40889.
|
[11] |
Xin Xia, Xu Guiying, Zhao Taotao, et al. Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer[J]. Journal of Physical Chemistry C, 2008, 112: 16377-16384.
|
[12] |
Xin Xia, Xu Guiying, Zhang Zhiqing, et al. Aggregation behavior of star-like PEO-PPO-PEO block copolymer in aqueous solution[J]. European Polymer Journal, 2007, 43: 3106-3111.
|
[13] |
Yang Shan, Zhang Zhiqing, Wang Fang, et al. Surface properties and aggregation behaviors of amphiphilic highly-branched block polyethers in aqueous solution[J]. Journal of Polymer Research, 2013, 20: 205.
|
[14] |
史松, 燕永利, 奚琪, 等. 三乙醇胺油酸酯/对二甲苯溶致液晶的泡沫性能研究[J]. 应用化工, 2022, 51 (5) : 1248-1251, 1255.
|
[15] |
中国石化集团胜利石油管理局. 原油消泡剂通用技术条件: Q/SH1020 2194—2013[S]. 东营: 中国石化集团胜利石油管理局, 2013: 7.
|
[16] |
Kasprzyk Wiktor, Świergosz Wiktor, Romanczyk Piotr P, et al. The role of molecular fluorophores in the photoluminescence of carbon dots derived from citric acid: current state-of-the-art and future perspectives[J]. Nanoscale, 2022, 14 (39) : 14368-14384.
|
[17] |
Georgakopoulos C G, Statheropoulos M, Montaudo G. Pyrolysis pathways of polyethers and a method for the interpretation of the pyrolysis mass spectra of polyethers[J]. Polymer Degradation and Stability, 1998, 61 (3) : 481-491.
|
[18] |
Danil W Boukhvalov, Vladimir Yu Osipov, Danatbek Murzalinov, et al. A comprehensive model of carbon nanodots with 0.21 nm lattice fringes patterns[J]. Carbon, 2024, 225: 119101.
|
[19] |
Ludmerczki Robert, Malfatti Luca, Stagi Luigi, et al. Polymerization-driven photoluminescence in alkanolamine-basedc-dots[J]. Chemistry-A European Journal, 2021, 27: 2543-2551.
doi: 10.1002/chem.202004465
pmid: 33196126
|
[20] |
Mondjinou Yawo A, Loren Bradley P, Collins Christopher J, et al. Gd3+: DOTa-modified 2-hydroxypropyl-β-cyclodextrin/4-sulfobutyl ether-β-cyclodextrin-based polyrotaxanes as long circulating high relaxivity mri contrast agents[J]. Bioconjugate Chemistry, 2018, 29 (11) : 3550-3560.
doi: 10.1021/acs.bioconjchem.8b00525
pmid: 30403467
|
[21] |
Zhang Qing, Wang Ruoyu, Feng Bowen, et al. Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation[J]. Nature Communication, 2021, 12: 6856-6869.
|
[22] |
Li Jun, Ni Xiping, Zhou Zhihan, et al. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide) -poly(ethylene oxide) -poly(propylene oxide) triblock copolymers and α-cyclodextrin [J]. Journal of the American Chemical Society, 2003, 125 (7) : 1788-1795.
|
[23] |
Mai Yiyong, Zhou Yongfeng, Yan Deyue, et al. Quantitative dependence of crystallinity on degree of branching for hyperbranched poly[3-ethyl-3- (hydroxymethyl) oxetane][J]. New Journal of Physics, 2005, 7: 42.
|
[24] |
Zhu Xinyuan, Zhou Yongfeng, Yan Deyue. Influence of branching architecture on polymer properties[J]. Journal of Polymer Science Part B-Polymer Physics, 2011, 49 (18) : 1277-1286.
|
[25] |
Magnusson Helene, Malmström Eva, Hult Anders, et al. The effect of degree of branching on the rheological and thermal properties of hyperbranched aliphatic polyethers[J]. Polymer, 2002, 43 (2) : 301-306.
|
[26] |
Alexandridis Paschalis, Alan T Hatton. Poly(ethylene oxide)-poly(propylene oxide) -poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96: 1-46.
|
[27] |
Friberg S E, Wohn C S, Greene B, et al. A nonaqueous foam with excellent stability[J]. Journal of Colloid and Interface Science, 1984, 101 (2) : 593-595.
|
[28] |
王莉娟, 张高勇, 董金凤, 等. 泡沫性能的测试和评价方法进展[J]. 日用化学工业, 2005, 35 (3) : 171-173, 191.
|
[29] |
Heymans Robbe, Tavernier Iris, Dewettinck Koen, et al. Crystal stabilization of edible oil foams[J]. Trends in Food Science & Technology, 2017, 69: 13-24.
|
[30] |
Zhang Qi, Zuo Lili, Wu Changchun, et al. The evolution and influence factors of CO2 flooding crude oil defoaming behavior after depressurization[J]. Journal of Petroleum Science and Engineering, 2021, 206: 108996.
|