[1] |
蔡义文, 刘媛, 宋闯, 等. 化妆品抗敏安全性评价模型的研究进展[J]. 日用化学品科学, 2021, 44 (3) : 48-54.
|
[2] |
宋佳, 陈华龙, 冯波, 等. 198例植物、动物组分化妆品不良反应分析[J]. 日用化学品科学, 2023, 46 (6) : 41-44.
|
[3] |
Hafner M F S, Rodrigues A C, Lazzarini R. Allergic contact dermatitis to cosmetics: retrospective analysis of a population subjected to patch tests between 2004 and 2017[J]. Anais Brasileiros de Dermatologia, 2020, 95 (6) : 696-701.
doi: 10.1016/j.abd.2020.04.011
pmid: 33036810
|
[4] |
OECD. The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins, OECD series on testing and assessment, No. 168 [S/OL]. Paris: OECD, 2014. https://doi.org/10.1787/9789264221444-en.
|
[5] |
国家食品药品监督管理总局化妆品标准专家委员会. 化妆品安全技术规范(2015年版): 第六章 6 皮肤变态反应试验[S]. 北京: 人民卫生出版社, 2018.
|
[6] |
国家食品药品监督管理总局化妆品标准专家委员会. 化妆品安全技术规范(2015年版): 第六章 24 化妆品用化学原料体外皮肤变态反应直接多肽反应试验[S]. 北京: 人民卫生出版社, 2018.
|
[7] |
国家食品药品监督管理总局化妆品标准专家委员会. 化妆品安全技术规范(2015年版): 第六章 27 体外皮肤变态反应氨基酸衍生化反应试验方法[S]. 北京: 人民卫生出版社, 2018.
|
[8] |
Roberts D W, Natsch A. High throughput kinetic profiling approach for covalent binding to peptides: application to skin sensitization potency of michael acceptor electrophiles[J]. Chemical Research in Toxicology, 2009, 22 (3) : 592-603.
doi: 10.1021/tx800431x
pmid: 19206519
|
[9] |
OECD. Test no. 442C: in chemico skin sensitisation: assays addressing the adverse outcome pathway key event on covalent binding to proteins, OECD guidelines for the testing of chemicals, section 4[S/OL]. Paris: OECD, 2024. https://doi.org/10.1787/9789264229709-en.
|
[10] |
United Nations. ST/SG/AC.10/30/Rev.9, Globally harmonized system of classification and labelling of chemicals (GHS) ninth revised edition[S/OL]. New York and Geneva: United Nations, 2021. .
|
[11] |
Natsch A, Haupt T, Wareing B, et al. Predictivity of the kinetic direct peptide reactivity assay (kDPRA) for sensitizer potency assessment and subclassification[J]. Altex, 2020, 37 (4) : 652-664.
|
[12] |
Hoffmann S, Kleinstreuer N, Alépée N, et al. Non-animal methods to predict skin sensitization (Ⅰ): the cosmetics europe database[J]. Critical Reviews in Toxicology, 2018, 48 (5) : 344-358.
|
[13] |
Basketter D A, Alepee N, Ashikaga T, et al. Categorization of chemicals according to their relative human skin sensitizing potency[J]. Dermatitis, 2014, 25 (1) : 11-21.
doi: 10.1097/DER.0000000000000003
pmid: 24407057
|
[14] |
Urbisch D, Becker M, Honarvar N, et al. Assessment of pre-and pro-haptens using non-animal test methods for skin sensitization[J]. Chemical Research in Toxicology, 2016, 29: 901-913.
doi: 10.1021/acs.chemrestox.6b00055
pmid: 27070937
|
[15] |
Lepoittevin J P. Metabolism versus chemical transformation or pro-versus prehaptens[J]. Contact Dermatitis, 2006, 54 (2) : 73-74.
|
[16] |
Gerberick F, Aleksic M, Basketter D, et al. Chemical reactivity measurement and the predictive identification of skin sensitisers[J]. Alternatives to Laboratory Animals, 2008, 36 (2) : 215-242.
|
[17] |
Jaeckh C, Blatz V, Fabian E, et al. Characterization of enzyme activities of cytochrome P450 enzymes, flavin-dependent monooxygenases, N-acetyltransferases and UDP-glucuronyltransferases in human reconstructed epidermis and full-thickness skin models[J]. Toxicology in Vitro, 2011, 25 (6) : 1209-1214.
doi: 10.1016/j.tiv.2011.03.012
pmid: 21435388
|