日用化学工业 ›› 2021, Vol. 51 ›› Issue (3): 235-242.doi: 10.3969/j.issn.1001-1803.2021.03.011
收稿日期:
2020-06-24
修回日期:
2021-03-04
出版日期:
2021-03-22
发布日期:
2021-03-23
通讯作者:
刘宇红
作者简介:
吴文海(1996-),男,安徽人,硕士,电话:13264197681,E-mail:
WU Wen-hai1(),HE Yi-fan2,LIU Yu-hong3(
)
Received:
2020-06-24
Revised:
2021-03-04
Online:
2021-03-22
Published:
2021-03-23
Contact:
Yu-hong LIU
摘要:
表面活性剂广泛应用于护肤品和皮肤清洁类产品,但频繁使用或不当接触表面活性剂可导致皮肤刺激、敏感或屏障功能损伤,引起皮肤不良反应。为了皮肤的安全,本文针对表面活性剂作用于皮肤的结构和成分,梳理其作用于皮肤的途径,基于该途径和皮肤症状两个维度建立评价体系,并对减缓表面活性剂刺激的功效成分及其作用原理进行分析总结,为抗敏抗刺激功效成分及温和型表面活性剂体系的研发提供参考。
中图分类号:
吴文海,何一凡,刘宇红. 表面活性剂对皮肤的不良反应、评价体系及防护[J]. 日用化学工业, 2021, 51(3): 235-242.
WU Wen-hai,HE Yi-fan,LIU Yu-hong. Mechanism, evaluation system and protection of surfactant on skin[J]. China Surfactant Detergent & Cosmetics, 2021, 51(3): 235-242.
表 1
基于皮肤症状的评价体系"
症状 | 评价指标 | 评价仪器/方式 |
---|---|---|
皮肤干燥、脱屑 | 脂质有序性[ | 拉曼光谱,红外光谱 |
水分含量,水分散失,皮肤pH值,皮肤表面油脂[ | 皮肤常规测试仪,拉曼光谱 | |
皮肤鳞屑指数、皮肤表面粗糙度[ | 皮肤表面纹理分析仪 | |
皮肤肿胀 | 角蛋白结构[ | 拉曼光谱,红外光谱 |
角质层厚度[ | 拉曼光谱,皮肤CT | |
皮肤红斑 | 细胞炎症因子[ | 细胞实验,3D皮肤模型 |
皮肤色度[ | 皮肤常规测试仪 | |
皮肤瘙痒 | 水分散失,水分含量[ | 皮肤常规测试仪,拉曼光谱 |
瘙痒感觉阈值[ | 电流感觉阈值 | |
皮肤表面油脂 | 油脂测试仪 |
表 2
基于表面活性剂刺激机理的评价体系"
机理 | 评价指标 | 评价仪器/方式 | |
---|---|---|---|
在体 | 离体 | ||
表面活性剂对细胞间脂质的作用 | 脂质含量,脂质有序性[ | 拉曼光谱 | 拉曼光谱,红外光谱,色谱 |
表面活性剂对角蛋白的作用 | 表面活性剂与角蛋白的结合情况[ | / | 玉米醇溶蛋白,牛血清白蛋白,ELISA |
表面活性剂对角蛋白结构的影响 | 拉曼光谱,红外光谱 | 拉曼光谱,红外光谱 | |
表面活性剂对天然保湿因子的作用 | 天然保湿因子含量 | 拉曼光谱 | 拉曼光谱,色谱 |
表面活性剂对活性表皮层的作用 | 细胞状态,细胞炎症因子,SOD活性,丙二醛含量[ | / | 细胞实验,3D皮肤模型 |
自由基含量 | 电子顺磁场共振光谱 | 自由基体外清除实验 | |
细胞膜 | / | 红细胞溶血实验,鸡胚绒毛尿囊膜实验 |
[1] |
Purohit P, Chandar P, Vilinska A, et al. Effect of mixed surfactants on stratum corneum: a drying stress and Raman spectroscopy study[J]. International Journal of Cosmetic Science, 2014,36(4) :379-385.
pmid: 24828034 |
[2] |
Emmanuelle L, Stéphanie B, Yves C, et al. Surfactants have multi-fold effects on skin barrier function[J]. European Journal of Dermatology, 2015,25(5) :424-435.
pmid: 26109150 |
[3] |
Bromberg L, Liu X, Wang I, et al. Control of human skin wettability using the pH of anionic surfactant solution treatments[J]. Colloids & Surfaces B Biointerfaces, 2017,157:366-372.
pmid: 28623693 |
[4] | Hoppel M, Kwizda K, Baurecht D, et al. The effect of a damaged skin barrier on percutaneous absorption of SDS and skin hydration investigated by confocal Raman spectroscopy[J]. Experimental Dermatology, 2016,25(5) :390-392. |
[5] | Li Z. Modern mild skin cleansing[J]. Journal of Cosmetics, Dermatological Sciences and Applications, 2020,10(2) :85-98. |
[6] | Tosato M G, Santos E P D, Alves R D S, et al. In vivo Raman spectroscopy of biochemical changes in human skin by cosmetic application[C]// Biomedical Vibrational Spectroscopy IV: Advances in Research and Industry. San Francisco: SPIE BiOS, 2010. |
[7] |
Mukherjee S, Yang L, Vincent C, et al. A comparison between interactions of triglyceride oil and mineral oil with proteins and their ability to reduce cleanser surfactant-induced irritation[J]. International Journal of Cosmetic Science, 2015,37(4) :371-378.
doi: 10.1111/ics.12205 pmid: 25656133 |
[8] |
Kikuchi S, Aosaki T, Bito K, et al. In vivo evaluation of lateral lipid chain packing in human stratum corneum[J]. Skin Research and Technology, 2014; 21(1) :76-83.
doi: 10.1111/srt.12159 pmid: 24889490 |
[9] |
Seweryn A. Interactions between surfactants and the skin-theory and practice[J]. Advances in Colloid and Interface Science, 2018,256:242-255.
doi: 10.1016/j.cis.2018.04.002 pmid: 29685575 |
[10] |
Coughlin C C, Frieden I J, Eichenfield L F. Clinical approaches to skin cleansing of the diaper area: practice and challenges[J]. Pediatric Dermatology, 2015,31:1-4.
doi: 10.1111/pde.12245 pmid: 24224482 |
[11] |
Hoppel M, Holper E, Baurecht D, et al. Monitoring the distribution of surfactants in the stratum corneum by combined ATR-FTIR and tape-stripping experiments[J]. Skin Pharmacology and Physiology, 2015,28(3) :167-175.
pmid: 25612540 |
[12] | Perticaroli S, Meyers J L, Wireko F C, et al. Cleansers’ mildness: stratum corneum lipid organization and water uptake after a single wash[J]. Journal of Raman Spectroscopy, 2020,51(5) :795-806. |
[13] | Han Yuchun, Huang Xu, Wang Yilin. Effects of hydrocarbon chain length and temperature on the self-assembly of cationic single-chain and Gemini surfactants and their interactions with bovine serum albumin[J]. Chinese Science Bulletin, 2016,61(28) :3127-3136. |
[14] |
Morris S A V, Thompson R T, Glenn R W, et al. Mechanisms of anionic surfactant penetration into human skin: Investigating monomer, micelle and submicellar aggregate penetration theories[J]. International Journal of Cosmetic Science, 2019,41(1) :55-66.
pmid: 30636015 |
[15] |
Taeko M, Ryota M, Misaki H, et al. Sodium lauryl sulfate stimulates the generation of reactive oxygen species through interactions with cell membranes[J]. Journal of Oleo Science, 2016,65(12) :993-1001.
doi: 10.5650/jos.ess16074 pmid: 27829611 |
[16] | Zhao Dan, Su Ning, Zhang Jiachan, et al. Study with respect to effect of sodium dodecyl sulfate on gene expression of keratinocytes and its signaling pathway[J]. China Surfactant Detergent Cosmetics, 2016,46(6) :334-338. |
[17] | Coquette A, Berna N, Vandenbosch A, et al. Analysis of interleukin-1α (IL-1α) and interleukin-8 (IL-8) expression and release in in vitro reconstructed human epidermis for the prediction of in vivo skin irritation and/or sensitization[J]. Toxicology in Vitro, 2003,17(3) :311-321. |
[18] |
Parsi K. Interaction of detergent sclerosants with cell membranes[J]. Phlebology: The Journal of Venous Disease, 2015,30(5) :306-315.
doi: 10.1177/0268355514534648 |
[19] |
Brink S, Wang Y U, Blum B, et al. Clinical skin mildness evaluations of direct and indirect exposure to two commercial laundry detergents with markedly different pH designed for sensitive skin using a hand-laundering model[J]. Journal of cosmetic science, 2019,70(2) :89-105.
pmid: 31125308 |
[20] |
Elsner P, Seyfarth F, Antonov D, et al. Development of a standardized testing procedure for assessing the irritation potential of occupational skin cleansers[J]. Contact Dermatitis, 2014,70(3) :151-157.
pmid: 24588368 |
[21] |
Lee E, An S, Im M S, et al. An improved method for measurement of change in skin roughness caused by cleansing products under mild application conditions[J]. Skin Research and Technology, 2011,17(3) :320-325.
doi: 10.1111/j.1600-0846.2011.00500.x pmid: 21332807 |
[22] | Yu Huan, Chen Yu, Cheng Shujun, et al. Study of anti-irritation effect of hyaluronic acid using 3D skin model[J]. China Surfactant Detergent Cosmetics, 2016,46(6) :339-343. |
[23] | Zhao Wenhong, Zhang Jianguo, Wang Kailei, et al. Effect of linear alkylbenzenesulfonate on the oxidative stress damage of mouse skin and antagonism of isoflavone[J]. Journal of Bengbu Medical College, 2015,40(3) :322-325. |
[24] | Ozawa T, Endo K, Masui T, et al. Advantage of sodium polyoxyethylene lauryl ether carboxylate as a mild cleansing agent[J]. Journal of Surfactants and Detergents, 2016,19(4) :785-794. |
[25] | Mao G, Flach C R, Mendelsohn R, et al. Imaging the distribution of sodium dodecyl sulfate in skin by confocal Raman and infrared microspectroscopy[J]. Pharmaceutical Research (Dordrecht), 2012,29(8) :2189-2201. |
[26] |
Yanase K, Hatta I. Disruption of human stratum corneum lipid structure by sodium dodecyl sulfate[J]. International Journal of Cosmetic Science, 2017,40(1) :44-49.
doi: 10.1111/ics.12430 pmid: 28922453 |
[27] |
Barba C, Semenzato A, Baratto G, et al. Action of surfactants on the mammal epidermal skin barrier[J]. Giornale Italiano Di Dermatologia E Venereologia, 2019,154(4) :405-412.
pmid: 30249078 |
[28] |
Lee M, Won K, Kim E J, et al. Comparison of stratum corneum thickness between two proposed methods of calculation using Raman spectroscopic depth profiling of skin water content[J]. Skin Research and Technology, 2018,24(3) :504-508.
doi: 10.1111/srt.12461 pmid: 29464802 |
[29] | Leskur D, Bukić J, Petrić A, et al. Anatomical site differences of sodium lauryl sulfate‐induced irritation: randomized controlled trial[J]. British Journal of Dermatology, 2019,181(5) :175-185. |
[30] |
Ham H, An S M, Lee E J, et al. Itching sensation and neuronal sensitivity of the skin[J]. Skin Research and Technology, 2016,22(1) :104-107.
pmid: 26250122 |
[31] |
Fujimura T, Shimotoyodome Y, Nishijima T, et al. Changes in hydration of the stratum corneum are the most suitable indicator to evaluate the irritation of surfactants on the skin[J]. Skin Research and Technology, 2017,23(1) :97-103.
doi: 10.1111/srt.2017.23.issue-1 |
[32] |
Falcone D, Uzunbajakava N E, Varghese B, et al. Microspectroscopic confocal raman and macroscopic biophysical measurements in the in vivo assessment of the skin barrier: perspective for dermatology and cosmetic sciences[J]. Skin Pharmacology and Physiology, 2015,28(6) :307-317.
doi: 10.1159/000439031 pmid: 26406586 |
[33] |
Stamatas G N, Sterke J D, Hauser M, et al. Lipid uptake and skin occlusion following topical application of oils on adult and infant skin[J]. Journal of Dermatological Science, 2008,50(2) :135-142.
doi: 10.1016/j.jdermsci.2007.11.006 pmid: 18164596 |
[34] |
Choe C, Schleusener J, Choe S, et al. A modification for the calculation of water depth profiles in oil-treated skin by in vivo confocal Raman microscopy[J]. Journal of Biophotonics, 2020,13(1) .
doi: 10.1002/jbio.201900224 pmid: 31568652 |
[35] | Cash K, High W, Sterke J D. An evaluation of barrier repair foam on the molecular concentration profiles of intrinsic skin constituents utilizing confocal Raman spectroscopy[J]. Journal of Clinical & Aesthetic Dermatology, 2012,5(8) :14-17. |
[36] |
Saad P, Flach C R, Walters R M, et al. Infrared spectroscopic studies of sodium dodecyl sulphate permeation and interaction with stratum corneum lipids in skin[J]. International Journal of Cosmetic Science, 2012,34(1) :36-43.
doi: 10.1111/j.1468-2494.2011.00678.x pmid: 21834942 |
[37] |
Chen Y, Ji X, Han Y, et al. Self-assembly of oleyl bis(2-hydroxyethyl)methyl ammonium bromide with sodium dodecyl sulfate and their interactions with zein[J]. Langmuir, 2016,32:8212.
doi: 10.1021/acs.langmuir.6b02091 pmid: 27452480 |
[38] |
Janek T, Czyżnikowska Z, Łuczyński J, et al. Physicochemical study of biomolecular interactions between lysosomotropic surfactants and bovine serum albumin[J]. Colloids and Surfaces B Biointerfaces, 2017,159:750-758.
doi: 10.1016/j.colsurfb.2017.08.046 pmid: 28886512 |
[39] |
Hoppel M, Baurecht D, Holper E, et al. Validation of the combined ATR-FTIR/tape stripping technique for monitoring the distribution of surfactants in the stratum corneum[J]. International Journal of Pharmaceutics, 2014,472:88-93.
doi: 10.1016/j.ijpharm.2014.06.011 pmid: 24928132 |
[40] |
Choe C S, Schleusener J, Jürgen L, et al. In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils[J]. Journal of Dermatological Science, 2017,87(2) :183-191.
doi: 10.1016/j.jdermsci.2017.04.016 pmid: 28522139 |
[41] | Mark A D. Cleansing‐induced changes in skin measured by in vivo confocal Raman spectroscopy[J]. Skin Research and Technology, 2019,26(1) :30-38. |
[42] | Albrecht S, Elpelt A, Kasim C, et al. Quantification and characterization of radical production in human, animal and 3D skin models during sun irradiation measured by EPR spectroscopy[J]. Free Radical Biology and Medicine, 2019,131(1) :299-308. |
[43] |
He Yifan, Wu Wenhai, Li Jing, et al. In vivo Raman spectroscopy study on the stimulation mechanism of surfactant[J]. Skin Res. Technol., 2020,26:898-904.
doi: 10.1111/srt.12892 pmid: 32585081 |
[44] | Kroll L M, Hoffman D R, Cunningham C, et al. Impact of stratum corneum damage on natural moisturizing factor (NMF) in the skin[M]. Treatment of Dry Skin Syndrome, 2012:441-451. |
[45] |
Moner V, Fernández E, Del Pozo A, et al. Sorption-desorption test for functional assessment of skin treated with a lipid system that mimics epidermal lamellar bodies[J]. Contact Dermatitis, 2017,77(1) :25-34.
doi: 10.1111/cod.12771 pmid: 28300294 |
[46] |
Koppes S A, Ljubojevi S, Had A, et al. Effect of allergens and irritants on levels of natural moisturizing factor and corneocyte morphology[J]. Contact Dermatitis, 2017,76(5) :287-295.
doi: 10.1111/cod.12770 pmid: 28295421 |
[47] |
Soltanipoor M, Stilla T, Riethmüller C, et al. Specific barrier response profiles after experimentally induced skin irritation in vivo[J]. Contact Dermatitis, 2018,79(2) :59-66.
doi: 10.1111/cod.12981 pmid: 29607504 |
[48] | Dong Yinmao, Tang Dongyan, He Congfen, et al. Mung bean sprout extract protected SDS-induced cell membrane and dna damage[J]. Natural Product Research and Development, 2011,23(4) :633-637. |
[49] | Fu Yanling, Tang Xiaoqin, Chen Minghua, et al. Study on shampoo with different surfactants as main surfactants[J]. Flavour Fragrance Cosmetics, 2020 (2) :22-26. |
[50] | Chew A L, Maibach H I. Irritant dermatitis detergents[J]. New England Journal of Medicine, 2006 (29) :249-256. |
[51] | Fevola, Michael J, Walters , et al. A New approach to formulating mild cleansers: hydrophobically-modified polymers for irritation mitigation[M]. Polymeric Delivery of Therapeutics, 2010:221-242. |
[52] |
Draelos Z D, Fowler J, Larsen W G, et al. Tolerance of fragranced and fragrance-free facial cleansers in adults with clinically sensitive skin[J] . Cutis, 2015,96:269-274.
pmid: 26682289 |
[53] |
Hornby S, Walters R, Tierney N, et al. Effect of commercial cleansers on skin barrier permeability[J]. Skin Research and Technology, 2016,22(2) :196-202.
doi: 10.1111/srt.12250 pmid: 26094702 |
[54] | Walters R M, Mao G, Gunn E T, et al. Cleansing formulations that respect skin barrier integrity[J]. Dermatology Research and Practice, 2012, (3) :495917. |
[55] |
Draelos Z, Hornby S, Walters R M, et al. Hydrophobically modified polymers can minimize skin irritation potential caused by surfactant-based cleansers[J]. Journal of Cosmetic Dermatology, 2013,12(4) :314-321.
doi: 10.1111/jocd.12061 pmid: 24305430 |
[56] | Hornby S, Walters R, Kamath Y, et al. Reduction in skin barrier perturbation by hydrophobically modified polymers[J]. Journal of the American Academy of Dermatology, 2011,64(2) :25. |
[57] | Ghafourian T, Nokhodchi A, Kaialy W. Surfactants as penetration enhancers for dermal and transdermal drug delivery[M]. Pyrrolidones, 2015:207-230. |
[1] | 张志升, 沈产量, 李建勋, 刘延强, 韩薇薇, 董三宝. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[2] | 李国峰, 刘凯楠, 莫文龙, 马腾. 页岩油藏渗吸驱油剂体系性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 250-258. |
[3] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[4] | 张红梅, 张永民. [芥酰胺苯甲酸][胆碱]离子液体表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 149-155. |
[5] | 刘佩, 潘婷, 裴晓梅, 宋冰蕾, 蒋建中, 崔正刚, Bernard P. Binks. 非离子-阴离子Bola型表面活性剂和纳米SiO2颗粒协同稳定的双重响应型O/W乳状液[J]. 日用化学工业(中英文), 2024, 54(1): 1-15. |
[6] | 艾浩康, 姜亚洁, 王亚魁, 张璐, 耿涛. 硬脂酸酯双子季铵盐的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(1): 16-23. |
[7] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
[8] | 王亚茹, 莫庭源, 赖红霞, 周悦, 谢嘉颖, 谭建华. 基于斑贴及稳定性试验剖析含烟酰胺化妆品皮肤刺激性成因[J]. 日用化学工业(中英文), 2024, 54(1): 51-56. |
[9] | 常世腾, 蔡小军, 郑延成, 刘雪瑾, 易晓, 蒋筑阳. 琥珀酸酯磺酸盐物化特性及其与甜菜碱复配体系界面性能[J]. 日用化学工业(中英文), 2023, 53(9): 989-998. |
[10] | 徐德荣,连威,熊金钊,康万利. 致密油藏表面活性剂渗吸影响因素研究[J]. 日用化学工业(中英文), 2023, 53(8): 857-864. |
[11] | 牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924. |
[12] | 王佳锐,魏孝承,张春雪,陈昢圳,郑向群,王强. 水环境样品中表面活性剂检测方法研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 925-934. |
[13] | 强学峰, 张莉, 郑斌, 侯倩倩, 燕坤. 无机盐KCl对离子型表面活性剂泡沫演化规律研究[J]. 日用化学工业(中英文), 2023, 53(7): 733-741. |
[14] | 周利丹, 卢伊娜, 杨继峰, 施雪梅, 熊玥, 张磊. 植物复合舒缓剂(CAP)对外源性皮肤刺激的保护作用[J]. 日用化学工业(中英文), 2023, 53(7): 757-764. |
[15] | 邢环宇, 贾丽华, 赵振龙, 杨瑞, 郭祥峰. 含萘酰亚胺和烷基疏水基的新型表面活性剂合成及性能[J]. 日用化学工业(中英文), 2023, 53(7): 742-747. |
|