日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (1): 1-15.doi: 10.3969/j.issn.2097-2806.2024.01.001
• 基础研究 • 下一篇
刘佩1,2,潘婷1,裴晓梅1,*(),宋冰蕾1,蒋建中1,崔正刚1,*(
),Bernard P. Binks3,*(
)
收稿日期:
2023-08-25
修回日期:
2023-12-02
出版日期:
2024-01-22
发布日期:
2024-01-26
基金资助:
Pei Liu1,2,Ting Pan1,Xiaomei Pei1,*(),Binglei Song1,Jianzhong Jiang1,Zhenggang Cui1,*(
),Bernard P. Binks3,*(
)
Received:
2023-08-25
Revised:
2023-12-02
Online:
2024-01-22
Published:
2024-01-26
Contact:
*Tel.: +86-13382888025, E-mail: pxmxiaomei@163.com(Xiaomei Pei); cuizhenggang@hotmail.com(Zhenggang Cui); b.p.binks@hull.ac.uk(Bernard P. Binks).
摘要:
合成了一种非离子-阴离子Bola型智能表面活性剂,通过pH-响应可以在非离子型CH3O (EO) 5-R11-COOH (pH
Ka=6.6)和Bola型CH3O (EO) 5-R11-COONa (pH>pKa)之间转换。单独使用时,非离子型和Bola型分别表现为不良乳化剂和优良乳化剂。与纳米SiO2颗粒复配使用时,非离子型能与SiO2颗粒协同稳定O/W(正癸烷)型Pickering乳状液,其中表面活性剂通过氢键作用吸附到颗粒表面产生原位疏水化作用,提高了颗粒的表面活性,并且这种Pickering乳状液具有pH-和温度-双重响应性,能够通过改变pH或者温度使乳状液在稳定和破乳之间实现多次转换。另一方面,Bola型CH3O(EO) 5-R11-COONa能够与纳米SiO2颗粒协同稳定分散液包油(oil-in-dispersion)乳状液,该乳状液具有良好的耐温性,但对调节pH时产生的盐较为敏感。然而与破乳后能完全返回水相便于回收再利用的同系物CH3O(EO) 7-R11-COOH相比,具有较短EO链的CH3O(EO) 5-R11-COOH无论处于非离子型还是Bola型状态仍具有相当的油溶性,破乳后不能完全返回水相,表明EO数大小对这类新型智能表面活性剂的性能有显著的影响。
中图分类号:
刘佩, 潘婷, 裴晓梅, 宋冰蕾, 蒋建中, 崔正刚, Bernard P. Binks. 非离子-阴离子Bola型表面活性剂和纳米SiO2颗粒协同稳定的双重响应型O/W乳状液[J]. 日用化学工业(中英文), 2024, 54(1): 1-15.
Pei Liu, Ting Pan, Xiaomei Pei, Binglei Song, Jianzhong Jiang, Zhenggang Cui, Bernard P. Binks. Dual-responsive oil-in-water emulsions co-stabilized by a nonionic-anionic Bola surfactant and silica nanoparticles[J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 1-15.
[1] |
Tang J T, Quinlan P J, Tam K C. Stimuli-responsive Pickering emulsions: Recent advances and potential applications[J]. Soft Matter, 2015, 11: 3512-3529.
doi: 10.1039/c5sm00247h pmid: 25864383 |
[2] |
Malcolm A S, Dexter A F, Middelberg A P J. Foaming properties of a peptide designed to form stimuli-responsive interfacial films[J]. Soft Matter, 2006, 2: 1057-1066.
doi: 10.1039/b609960b pmid: 32680208 |
[3] |
Balasuriya T S, Dagastine R R. Interaction forces between bubbles in the presence of novel responsive peptide surfactants[J]. Langmuir, 2012, 28: 17230-17237.
doi: 10.1021/la304351a pmid: 23181754 |
[4] |
Dexter A F, Malcolm A S, Middelberg A P J. Reversible active switching of the mechanical properties of a peptide film at a fluid-fluid interface[J]. Nat. Mater., 2006, 5: 502-506.
pmid: 16715085 |
[5] |
Liu Y, Jessop P G, Cunningham M C, et al. Switchable surfactants[J]. Science, 2006, 313: 958-960.
pmid: 16917059 |
[6] |
Zhang Y, Feng Y, Wang J, et al. CO2-Switchable wormlike micelles[J]. Chem. Commun., 2013, 49: 4902-4904.
doi: 10.1039/c3cc41059e |
[7] |
Jiang J Z, Zhu Y, Cui Z G, et al. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant[J]. Angew. Chem. Int. Ed., 2013, 52: 12373-12376.
doi: 10.1002/anie.v52.47 |
[8] |
Saji T, Hoshino K, Aoyagui S. Reversible formation and disruption of micelles by control of the redox state of the head group[J]. J. Am. Chem. Soc., 1985, 107: 6865-6868.
doi: 10.1021/ja00310a020 |
[9] |
Aydogan N, Abbott N L. Comparison of the surface activity and bulk aggregation of ferrocenyl surfactants with cationic and anionic headgroups[J]. Langmuir, 2001, 17: 5703-5706.
doi: 10.1021/la010178e |
[10] | Schmittel M, Lal M, Graf K, et al. N,N′-dimethyl-2, 3-dialkylpyrazinium salts as redox-switchable surfactants? Redox, spectral, EPR and surfactant properties[J]. Chem. Commun., 2005, 41: 5650-5652. |
[11] |
Kang H C, Lee B M, Yoon J, et al. Synthesis and surface-active properties of new photosensitive surfactants containing the azobenzene group[J]. J. Colloid Interface Sci., 2000, 231: 255-264.
doi: 10.1006/jcis.2000.7158 |
[12] |
Eastoe J, Dominguez M S, Wyatt P, et al. Properties of a stilbene-containing gemini photosurfactant: light-triggered changes in surface tension and aggregation[J]. Langmuir, 2002, 18: 7837-7844.
doi: 10.1021/la0257384 |
[13] |
Chevallier E, Monteux C, Lequeux F, et al. Photofoams: Remote control of foam destabilization by exposure to light using an azobenzene surfactant[J]. Langmuir, 2012, 28: 2308-2312.
doi: 10.1021/la204200z pmid: 22280317 |
[14] |
Li J, Zhao M, Zhou H, et al. Photo-induced transformation of wormlike micelles to spherical micelles in aqueous solution[J]. Soft Matter, 2012, 8: 7858-7864.
doi: 10.1039/c2sm25218j |
[15] |
Raghavan S R, Edlund H, Kaler E W. Cloud-point phenomena in wormlike micellar systems containing cationic surfactant and salt[J]. Langmuir, 2002, 18: 1056-1064.
doi: 10.1021/la011148e |
[16] |
Aathimanikandan S V, Savariar E N, Thayumanavan S. Temperature-sensitive dendritic micelles[J]. J. Am. Chem. Soc., 2005, 127: 14922-14929.
pmid: 16231948 |
[17] |
Yang Z J, Wei J J, Sobolev Y I, et al. Systems of mechanized and reactive droplets powered by multi-responsive surfactants[J]. Nature, 2018, 553: 313-318.
doi: 10.1038/nature25137 |
[18] |
Liang C, Harjani J R, Robert T, et al. Use of CO2-triggered switchable surfactants for the stabilization of oil-in-water emulsions[J]. Energy Fuels, 2012, 26: 488-494.
doi: 10.1021/ef200701g |
[19] |
Fameau A L, Saint-Jalmes A, Cousin F, et al. Smart foams: switching reversibly between ultrastable and unstable foams[J]. Angew. Chem. Int. Ed., 2011, 50: 8264-8268.
doi: 10.1002/anie.v50.36 |
[20] | Becher P. Encyclopedia of Emulsion Technology[M]. New York: Marcel Dekker, 1983. |
[21] | Rosen M J, Kunjappu J T. Surfactants and Interfacial Phenomena (4th edition)[M]. Hoboken: John Wiley & Sons, 2012. |
[22] | Israelachvili J N. Intermolecular and surface forces[M]. London: Academic Press, 1992. |
[23] |
Binks B P. Particles as surfactants—similarities and differences[J]. Curr. Opin. Colloid Interface Sci., 2002, 7: 21-41.
doi: 10.1016/S1359-0294(02)00008-0 |
[24] |
Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles[J]. Adv. Colloid Interface Sci., 2003, 100-102: 503-546.
doi: 10.1016/S0001-8686(02)00069-6 |
[25] | Binks B P, Horozov T S. Colloid particles at liquid interfaces[M]. London: Cambridge University Press, 2006, Chapter 1. |
[26] |
Xu M D, Jiang J Z, Pei X M, et al. Novel oil-in-water emulsions stabilized by ionic surfactant and similarly charged nanoparticles at very low concentrations[J]. Angew. Chem. Int. Ed., 2018, 130: 7864-7868.
doi: 10.1002/ange.v130.26 |
[27] |
Xu M D, Xu L F, Lin Q, et al. Switchable oil-in-water emulsions stabilized by like-charged surfactants and particles at very low concentrations[J]. Langmuir, 2019, 35: 4058-4067.
doi: 10.1021/acs.langmuir.8b04159 pmid: 30807183 |
[28] |
Lin Q, Xu M D, Cui Z G, et al. Structure and stabilization mechanism of diesel oil-in-water emulsions stabilized solely by either positively or negatively charged nanoparticles[J]. Colloids Surf. A, 2019, 573: 30-39.
doi: 10.1016/j.colsurfa.2019.04.046 |
[29] |
Ravera F, Ferrari M, Liggieri L, et al. Liquid-liquid interfacial properties of mixed nanoparticle-surfactant systems[J]. Colloids Surf. A, 2008, 323: 99-108.
doi: 10.1016/j.colsurfa.2007.10.017 |
[30] | Jiang J Z, Ma Y X, Cui Z G, et al. Pickering emulsions responsive to CO2/N2 and light dual stimuli at ambient temperature[J]. Langmuir, 2016, 32: 8868-8675. |
[31] |
Xu M D, Zhang W Q, Pei X M, et al. CO2/N2 triggered switchable Pickering emulsions stabilized by alumina nanoparticles in combination with a conventional anionic surfactant[J]. RSC Adv., 2017, 7: 29742-29751.
doi: 10.1039/C7RA03722H |
[32] |
Liu K H, Jiang J Z, Cui Z G, et al. pH-Responsive Pickering emulsions stabilized by silica nanoparticles in combination with a conventional zwitterionic surfactant[J]. Langmuir, 2017, 33: 2296-2305.
doi: 10.1021/acs.langmuir.6b04459 pmid: 28191963 |
[33] |
Zhu Y, Jiang J Z, Liu K H, et al. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant[J]. Langmuir, 2015, 31: 3301-3307.
doi: 10.1021/acs.langmuir.5b00295 |
[34] |
Zhu Y, Fu T, Liu K H, et al. Thermo-responsive Pickering emulsions stabilized by silica nanoparticles in combination with alkyl polyoxyethylene ether nonionic surfactant[J]. Langmuir, 2017, 33: 5724-5733.
doi: 10.1021/acs.langmuir.7b00273 |
[35] |
Akartuna I, Studart A R, Tervoort E, et al. Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles[J]. Langmuir, 2008, 24: 7161-7168.
doi: 10.1021/la800478g pmid: 18547079 |
[36] |
Wei Y, Tong Z, Dai L, et al. Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis[J]. J. Colloid Interface Sci., 2020, 563: 291-307.
doi: 10.1016/j.jcis.2019.12.085 |
[37] |
Lan Q, Yang F, Zhang S, et al. Synergistic effect of silica nanoparticles and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions[J]. Colloids Surf. A, 2007, 302: 126-135.
doi: 10.1016/j.colsurfa.2007.02.010 |
[38] |
Yu S J, Zhang H J, Jiang J Z, et al. Pickering emulsions of alumina nanoparticles and Bola-type selenium surfactant yield a fully recyclable aqueous phase[J]. Green Chem., 2020, 22: 5470-5475
doi: 10.1039/D0GC02016H |
[39] |
Pei X M, Zhang S, Zhang W Q, et al. Behavior of smart surfactants in stabilizing pH-responsive emulsions[J]. Angew. Chem. Int. Ed., 2021, 60: 5235-5239.
doi: 10.1002/anie.202013443 pmid: 33258181 |
[40] |
Liu P, Wu J H, Pei X M, et al. Recyclable surfactant containing dynamic covalent bond and relevant smart emulsions[J]. Green Chem., 2022, 24: 7612-7621.
doi: 10.1039/D2GC01977A |
[41] |
Liu P, Zhang S, Pei X M, et al. Recyclable and re-usable smart surfactant for stabilization of various multi-responsive emulsions alone or with nanoparticles[J]. Soft Matter, 2022, 18: 849-858.
doi: 10.1039/d1sm01660a pmid: 34982810 |
[42] |
Liu P, Pei X M, Cui Z G, et al. Recyclable nonionic-anionic bola surfactant as a stabilizer of size-controllable and pH-responsive Pickering emulsions[J]. Langmuir, 2023, 39: 841-850.
doi: 10.1021/acs.langmuir.2c02924 pmid: 36603129 |
[43] | Attwood D, Florence A T. Surfactant systems, their chemistry, pharmacy and biology[M]. Chapman and Hall, 1983: 473. |
[44] |
Cui Z G, Yang L L, Cui Y Z, et al. Effects of surfactant structure on the phase inversion of emulsions stabilized by mixtures of silica nanoparticles and cationic surfactant[J]. Langmuir, 2010, 26: 4717-4724.
doi: 10.1021/la903589e pmid: 19950938 |
[45] |
Cummins P G, Penfold J, Staples E. Nature of the adsorption of the nonionic surfactant pentaethylene glycol monododecyl ether on a ludox silica sol[J]. J. Phys. Chem., 1992, 96: 8092-8094.
doi: 10.1021/j100199a049 |
[46] |
Zeng X, Osseo-Asare K. Partitioning behavior of silica in the PEG/dextran/H2O aqueous biphasic system[J]. Colloids and Surfaces A, 2003, 226: 45-54.
doi: 10.1016/S0927-7757(03)00354-6 |
[47] |
Zhang L, Zhang G C, Ge J J, et al. pH- and thermo-responsive Pickering emulsion stabilized by silica nanoparticles and conventional nonionic copolymer surfactants[J]. J. Colloid Interface Sci., 2022, 616: 129-140.
doi: 10.1016/j.jcis.2022.02.067 |
[48] |
Zhang R, Somasundaran P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces[J]. Adv. Colloid Interface. Sci., 2006, 123-126: 213-229.
doi: 10.1016/j.cis.2006.07.004 |
[1] | 冯晓君,张鹏,李蕊蕊,赖璐. 基于十四烷基二乙烯三胺的CO2响应性Pickering乳液的稳定性能研究[J]. 日用化学工业, 2020, 50(12): 842-847. |
[2] | 张婉晴,蒋建中,崔正刚. 表面活性剂-纳米颗粒相互作用与智能体系的构建(III)相反电荷表面活性剂-纳米颗粒相互作用(ii)—— 用常规表面活性剂构建刺激-响应性Pickering乳状液和Pickering泡沫[J]. 日用化学工业, 2019, 49(9): 561-571. |
[3] | 陈钊,蒋建中,崔正刚. 表面活性剂-纳米颗粒相互作用与智能体系的构建(II)相反电荷表面活性剂-纳米颗粒相互作用(i)—— 开关转移构建开关性Pickering乳状液和Pickering泡沫[J]. 日用化学工业, 2019, 49(8): 492-502. |
[4] | 张婉晴,蒋建中,崔正刚. 表面活性剂-纳米颗粒相互作用与智能体系的构建(IV)非离子表面活性剂-纳米颗粒相互作用——氢键作用构建温度-响应性Pickering乳状液[J]. 日用化学工业, 2019, 49(10): 633-642. |
|