日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (3): 390-398.doi: 10.3969/j.issn.2097-2806.2025.03.015
赵化冰1,2,*(),李颖甜1,王熙函1,黄正梅3,路福平1,2,*(
)
收稿日期:
2024-05-06
修回日期:
2025-03-07
出版日期:
2025-03-22
发布日期:
2025-04-01
Huabing Zhao1,2,*(),Yingtian Li1,Xihan Wang1,Zhengmei Huang3,Fuping Lu1,2,*(
)
Received:
2024-05-06
Revised:
2025-03-07
Online:
2025-03-22
Published:
2025-04-01
Contact:
*E-mail: zhaohuabing@tust.edu.cn (Huabing Zhao); lfp@tust.edu.cn (Fuping Lu).
摘要:
皮肤微生物组及其生存环境共同构成了皮肤微生态系统,发挥着重要的屏障作用。微生物组是皮肤微生态系统的核心,其通过介导物理屏障、化学屏障以及免疫屏障的相互作用,维持着皮肤稳态。日常使用护肤品已成为现代人的生活习惯,其对皮肤微生态的影响不容忽视。为此,本文综述了护肤品中可能影响皮肤微生态的各类因素,从共性影响、有害影响、有益影响、不确定性影响几个角度进行了系统分析。在此基础上,讨论了微生态护肤品的研发方向。
中图分类号:
赵化冰, 李颖甜, 王熙函, 黄正梅, 路福平. 皮肤微生态与微生态护肤品[J]. 日用化学工业(中英文), 2025, 55(3): 390-398.
Huabing Zhao, Yingtian Li, Xihan Wang, Zhengmei Huang, Fuping Lu. Skin microecology and microecological skincare products[J]. China Surfactant Detergent & Cosmetics, 2025, 55(3): 390-398.
[1] | 王茜, 陈园园, 宋丽雅. 皮肤微生态与化妆品研发[J]. 日用化学工业, 2017, 47 (3): 168-173. |
[2] | Nakatsuji T, Chen T H, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis[J]. Science Translational Medicine, 2017, 9 (378): 4680. |
[3] | Bitschar K, Sauer B, Focken J, et al. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors[J]. Nature Communications, 2019, 10 (1): 2730. |
[4] | Paharik A E, Parlet C P, Chung N, et al. Coagulase-negative Staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing[J]. Cell Host Microbe, 2017, 22 (6): 746-756. |
[5] | Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization[J]. Nature, 2010, 465 (7296): 346-349. |
[6] |
Uberoi A, Bartow-Mckenney C, Zheng Q, et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor[J]. Cell Host Microbe, 2021, 29 (8): 1235-1248.
doi: 10.1016/j.chom.2021.05.011 pmid: 34214492 |
[7] |
Zheng Y, Hunt R L, Villaruz A E, et al. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides[J]. Cell Host Microbe, 2022, 30 (3): 301-313.
doi: 10.1016/j.chom.2022.01.004 pmid: 35123653 |
[8] |
Kirschner N, Brandner J M. Barriers and more: functions of tight junction proteins in the skin[J]. Annals of the New York Academy of Sciences, 2012, 1257: 158-166.
doi: 10.1111/j.1749-6632.2012.06554.x pmid: 22671602 |
[9] | Mclean W H. Filaggrin failure-from ichthyosis vulgaris to atopic eczema and beyond[J]. British Journal of Dermatology, 2016, 175 Suppl 2: 4-7. |
[10] |
Schaupp L, Muth S, Rogell L, et al. Microbiota-induced type Ⅰ interferons instruct a poised basal state of dendritic cells[J]. Cell, 2020, 181 (5): 1080-1096.
doi: S0092-8674(20)30485-2 pmid: 32380006 |
[11] |
Di Domizio J, Belkhodja C, Chenuet P, et al. The commensal skin microbiota triggers type I IFN-dependent innate repair responses in injured skin[J]. Nature Immunology, 2020, 21 (9): 1034-1045.
doi: 10.1038/s41590-020-0721-6 pmid: 32661363 |
[12] |
Scharschmidt T C, Vasquez K S, Truong H A, et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes[J]. Immunity, 2015, 43 (5): 1011-1021.
doi: 10.1016/j.immuni.2015.10.016 pmid: 26588783 |
[13] | Kjer-Nielsen L, Patel O, Corbett A J, et al. MR1 presents microbial vitamin B metabolites to MAIT cells[J]. Nature, 2012, 491 (7426): 717-723. |
[14] | Boxberger M, Cenizo V, Cassir N, et al. Challenges in exploring and manipulating the human skin microbiome[J]. Microbiome, 2021, 9 (1): 125. |
[15] |
Grice E A, Kong H H, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science, 2009, 324 (5931): 1190-1192.
doi: 10.1126/science.1171700 pmid: 19478181 |
[16] | Bouslimani A, Da Silva R, Kosciolek T, et al. The impact of skin care products on skin chemistry and microbiome dynamics[J]. BMC Biology, 2019, 17 (1): 47. |
[17] |
Blaser M J, Falkow S. What are the consequences of the disappearing human microbiota?[J]. Nature Reviews Microbiology, 2009, 7 (12): 887-894.
doi: 10.1038/nrmicro2245 pmid: 19898491 |
[18] | Lee H J, Jeong S E, Lee S, et al. Effects of cosmetics on the skin microbiome of facial cheeks with different hydration levels[J]. Microbiologyopen, 2018, 7 (2): 557. |
[19] | Ciardiello T, Pinto D, Marotta L, et al. Effects of fermented oils on alpha-biodiversity and relative abundance of cheek resident skin microbiota[J]. Cosmetics, 2020, 7 (2): 34. |
[20] | Zhao H B, Yu F L, Wang C C, et al. The impacts of sodium lauroyl sarcosinate in facial cleanser on facial skin microbiome and lipidome[J]. Cosmet. Dermatol., 2024, 23 (4):1351-1359. |
[21] |
Wang Q, Cui S M, Zhou L, et al. Effect of cosmetic chemical preservatives on resident flora isolated from healthy facial skin[J]. Journal of Cosmetic Dermatology, 2019, 18 (2): 652-658.
doi: 10.1111/jocd.12822 pmid: 30548758 |
[22] |
Zhang W, Wang X, Zhao L, et al. Effect of leave-on cosmetic antimicrobial preservatives on healthy skin resident Staphylococcus epidermidis[J]. Journal of Cosmetic Dermatology, 2023, 22 (7): 2115-2121.
doi: 10.1111/jocd.15690 pmid: 36895166 |
[23] | Pinto D, Ciardiello T, Franzoni M, et al. Effect of commonly used cosmetic preservatives on skin resident microflora dynamics[J]. Scientific Reports, 2021, 11 (1): 8695. |
[24] |
Li B S, Cary J H, Maibach H I. Stratum corneum substantivity: drug development implications[J]. Archives of Dermatological Research, 2018, 310 (7): 537-549.
doi: 10.1007/s00403-018-1841-9 pmid: 29752541 |
[25] | Murphy B, Hoptroff M, Arnold D, et al. In-vivo impact of common cosmetic preservative systems in full formulation on the skin microbiome[J]. PLoS One, 2021, 16 (7): 0254172. |
[26] | Toutain-Kidd C M, Kadivar S C, Bramante C T, et al. Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA[J]. Antimicrobial Agents Chemotherapy, 2009, 53 (1): 136-145. |
[27] |
Nielsen C K, Kjems J, Mygind T, et al. Effects of Tween 80 on growth and biofilm formation in laboratory media[J]. Frontiers in Microbiology, 2016, 7: 1878.
pmid: 27920774 |
[28] |
Groot R D, Rabone K L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants[J]. Biophysical Journal, 2001, 81 (2): 725-736.
pmid: 11463621 |
[29] | Allegrone G, Ceresa C, Rinaldi M, et al. Diverse effects of natural and synthetic surfactants on the inhibition of Staphylococcus aureus biofilm[J]. Pharmaceutics, 2021, 13 (8): 1172. |
[30] | Numata S, Akamatsu H, Akaza N, et al. Quantitative effect of face washing on cutaneous resident microbiota in female subjects who wear make-up[J]. Journal of Dermatology, 2012, 39 (12): 1100-1101. |
[31] | Chen Y, Liao M R, Ma K, et al. Implications of surfactant hydrophobic chain architecture on the Surfactant-Skin lipid model interaction[J]. Journal of Colloid and Interface Science, 2022, 608 (Pt 1): 405-415. |
[32] |
Capone K, Kirchner F, Klein S L, et al. Effects of colloidal oatmeal topical atopic dermatitis cream on skin microbiome and skin barrier properties[J]. Journal of Drugs in Dermatology, 2020, 19 (5): 524-531.
pmid: 32484623 |
[33] | Tollenaere M, Boira C, Chapuis E, et al. Action of mangifera indica leaf extract on acne-prone skin through sebum harmonization and targeting C. acnes [J]. Molecules, 2022, 27 (15): 4769. |
[34] |
Zeichner J, Seite S. From probiotic to prebiotic using thermal spring water[J]. Journal of Drugs in Dermatology, 2018, 17 (6): 657-662.
pmid: 29879253 |
[35] |
Krutmann J. Pre- and probiotics for human skin[J]. Clinics in Plastic Surgery, 2012, 39 (1):59-64.
doi: 10.1016/j.cps.2011.09.009 pmid: 22099848 |
[36] | Hong K B, Hong Y H, Jung E Y, et al. Changes in the diversity of human skin microbiota to cosmetic serum containing prebiotics: results from a randomized controlled trial[J]. Journal of Personalized Medicine, 2020, 10 (3): 91. |
[37] |
Li M, Truong K, Pillai S, et al. The potential prebiotic effect of 2-Butyloctanol on the human axillary microbiome[J]. International Journal of Cosmetic Science, 2021, 43 (6): 627-635.
doi: 10.1111/ics.12738 pmid: 34448215 |
[38] | Butler E, Lundqvist C, Axelsson J. Lactobacillus reuteri DSM 17 938 as a novel topical cosmetic ingredient: a proof of concept clinical study in adults with atopic dermatitis[J]. Microorganisms, 2020, 8 (7): 1026. |
[39] | Gueniche A, Liboutet M, Cheilian S, et al. Vitreoscilla filiformis extract for topical skin care: a review[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 747663. |
[40] | Nodake Y, Matsumoto S, Miura R, et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe-A blinded randomized clinical trial[J]. Journal of Dermatological Science, 2015, 79 (2): 119-126. |
[41] | O'neill A M, Nakatsuji T, Hayachi A, et al. Identification of a human skin commensal bacterium that selectively kills Cutibacterium acnes [J]. Journal of Investigative Dermatology, 2020, 140 (8): 1619-1628. |
[42] |
Nakatsuji T, Hata T R, Tong Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial[J]. Nature Medicine, 2021, 27 (4): 700-709.
doi: 10.1038/s41591-021-01256-2 pmid: 33619370 |
[43] | Notay M, Saric-Bosanac S, Vaughn A R, et al. The use of topical Nitrosomonas eutropha for cosmetic improvement of facial wrinkles[J]. Journal of Cosmetic Dermatology, 2020, 19 (3): 689-693. |
[44] | Kim M J, Tagele S B, Jo H, et al. Effect of a bioconverted product of Lotus corniculatus seed on the axillary microbiome and body odor[J]. Scientific Reports, 2021, 11 (1): 10138. |
[45] | Leignadier J, Drago M, Lesouhaitier O, et al. Lysine-dendrimer, a new non-aggressive solution to rebalance the microbiota of acne-prone skin[J]. Pharmaceutics, 2023, 15 (8) : 2083. |
[46] |
Two A M, Nakatsuji T, Kotol P F, et al. The cutaneous microbiome and aspects of skin antimicrobial defense system resist acute treatment with topical skin cleansers[J]. Journal of Investigative Dermatology, 2016, 136 (10): 1950-1954.
doi: S0022-202X(16)32085-1 pmid: 27377698 |
[47] | Xu Z, Liu X, Niu Y, et al. Skin benefits of moisturising body wash formulas for children with atopic dermatitis: a randomised controlled clinical study in China[J]. Australas Journal of Dermatol, 2020, 61 (1): 54-59. |
[48] | Yu J J, Manus M B, Mueller O, et al. Antibacterial soap use impacts skin microbial communities in rural Madagascar[J]. PLoS One, 2018, 13 (8): 0199899. |
[49] | Luz-Veiga M, Amorim M, Pinto-Ribeiro I, et al. Cannabidiol and cannabigerol exert antimicrobial activity without compromising skin microbiota[J]. International Journal of Molecular Sciences, 2023, 24 (3): 2389. |
[50] |
Cheesman M J, Alcorn S, Verma V, et al. An assessment of the growth inhibition profiles of Hamamelis virginiana L. extracts against Streptococcus and Staphylococcus spp[J]. Journal of Traditional and Complementary Medicine, 2021, 11 (5): 457-465.
doi: 10.1016/j.jtcme.2021.03.002 pmid: 34522640 |
[51] | Rowenczyk L, Duclairoir-Poc C, Barreau M, et al. Impact of coated TiO2-nanoparticles used in sunscreens on two representative strains of the human microbiota: effect of the particle surface nature and aging[J]. Colloids Surf. B Biointerfaces, 2017, 158: 339-348. |
[52] | Torbati T V, Javanbakht V. Fabrication of TiO2/Zn2TiO4/Ag nanocomposite for synergic effects of UV radiation protection and antibacterial activity in sunscreen. Colloids and surfaces[J]. Colloids Surf. B Biointerfaces, 2020, 187: 110652. |
[53] | Jacques C, Bacqueville D, Jamin E L, et al. Multi-omics approach to understand the impact of sun exposure on an in vitro skin ecosystem and evaluate a new broad-spectrum sunscreen[J]. Photochemistry and Photobiology, 2024, 100 (2): 477-490. |
[54] | Moldes A B, Rodriguez-Lopez L, Rincon-Fontan M, et al. Synthetic and bio-derived surfactants versus microbial biosurfactants in the cosmetic industry: an overview[J]. International Journal of Molecular Sciences, 2021, 22 (5): 2371. |
[55] | P·阿勒夫, C·哈通, M·席林. 包含生物表面活性剂的含水毛发和皮肤清洁组合物: CN104125821B[P]. 2017-04-12. |
[56] | 翟丽, 朱丽, 黄正梅. 一种含有谷物发酵物的无泡皮肤清洁产品及其制备方法: CN106466291B[P]. 2019-06-07. |
[57] | D·A·冈萨雷斯, M·L·格鲁姆布里奇, M·麦克唐内尔, 等. 包含可生物降解的磨料颗粒的皮肤清洁组合物: CN106029174A[P]. 2016-10-12. |
[1] | 赵楚杰,吴丽晴,何秋星,杨峥,叶吕阳光,原丽红. 中国海参养殖现状与护肤功效研究进展[J]. 日用化学工业(中英文), 2025, 55(2): 225-234. |
[2] | 李生鹏, 李静, 梁超, 赵冉, 张晓洁, 孙丽丽. 丝素蛋白对皮肤光损伤的保护作用[J]. 日用化学工业(中英文), 2024, 54(9): 1117-1124. |
[3] | 刘兆亿, 陈鑫宇, 王艳, 李雪, 郭若曦, 张晗. 氧化苦参碱对小鼠皮肤屏障功能障碍的修复作用研究[J]. 日用化学工业(中英文), 2024, 54(7): 777-783. |
[4] | 杲款款, 杨素珍, 韩婷婷, 李燕, 袁春颖, 毛欣宇. 王浆酸及其护肤功效的研究进展[J]. 日用化学工业(中英文), 2024, 54(2): 209-215. |
[5] | 郑玉梅, 胡熔, 吴文海, 宋丽雅, 王闻. 皮肤微生态调节型产品的评价方法概述[J]. 日用化学工业(中英文), 2024, 54(11): 1382-1390. |
[6] | 顾薇薇. 视觉效应下日用护肤品包装元素优化设计方法[J]. 日用化学工业(中英文), 2023, 53(9): 1094-1100. |
[7] | 李惠玲, 周春霞, 章漳. 细梗蔷薇愈伤组织提取物在人真皮成纤维细胞及3D表皮模型上的护肤功效探究[J]. 日用化学工业(中英文), 2023, 53(3): 300-307. |
[8] | 狄飞倩, 程文静, 李璐瑶, 张佳婵, 王昌涛, 安全. 基于文献计量探究皮肤微生态领域相关研究热点[J]. 日用化学工业(中英文), 2023, 53(3): 339-348. |
[9] | 柏玮,韩春乐,王淼,杜焕青,董凤伟,葛啸虎. 牛奶外泌体对皮肤屏障的影响研究[J]. 日用化学工业, 2022, 52(9): 981-989. |
[10] | 赵云珊,江月明,鲁文嘉,贾明明,瞿欣. 广藿香叶提取物的皮肤舒缓和修护功效研究[J]. 日用化学工业, 2022, 52(8): 833-836. |
[11] | 樊雨梅,帖航,赵海晴,苏宁,廖峰. 驴油提升皮肤屏障功能及潜在作用机制研究[J]. 日用化学工业, 2022, 52(6): 626-631. |
[12] | 帖航,吕瑜峰,张阳,徐亮,闫妍. 表皮葡萄球菌发酵提取物对人体皮肤屏障的影响[J]. 日用化学工业, 2022, 52(4): 383-389. |
[13] | 刘慧,李莉,刘婷媛,徐勤科,孙莺,郭朝晖. HPLC法检测婴幼儿与成人护肤品中防腐剂添加情况的研究[J]. 日用化学工业(中英文), 2022, 52(11): 1241-1247. |
[14] | 白鑫,陈雨桐,尚亚卓. 碳酸类护肤品的功效评测[J]. 日用化学工业, 2021, 51(8): 734-740. |
[15] | 程文静,张佳婵,杨依林,石秀芹,王昌涛,安全. 市售护肤品防腐剂使用情况调查及未来发展趋势探究[J]. 日用化学工业, 2021, 51(7): 679-685. |
|