日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (2): 225-234.doi: 10.3969/j.issn.2097-2806.2025.02.012
收稿日期:
2024-06-30
修回日期:
2025-01-24
出版日期:
2025-02-22
发布日期:
2025-02-28
通讯作者:
原丽红
基金资助:
Chujie Zhao,Liqing Wu,Qiuxing He,Zheng Yang,Lvyangguang Ye,Lihong Yuan*()
Received:
2024-06-30
Revised:
2025-01-24
Online:
2025-02-22
Published:
2025-02-28
Contact:
Lihong Yuan
摘要:
海参是一种备受推崇的滋补食材,被誉为“八大海宝”之一。海参活性物质具有多种生理活性,如抗肿瘤、抗氧化、抗凝血、抗病毒、抗疲劳、增强免疫、改善记忆和代谢调节等,尤其在护肤行业表现出显著的抗衰老、保湿、美白、抗皱、修复和抑制黑色素等功效。本文综述了海参在国内的养殖现状及其活性成分在护肤品中的应用,旨在为中国的护肤品和药用行业提供更多的原料和半成品,推动海参活性成分在产业中的发展,为热带海参养殖业注入新的活力,促进其快速发展。
中图分类号:
赵楚杰,吴丽晴,何秋星,杨峥,叶吕阳光,原丽红. 中国海参养殖现状与护肤功效研究进展[J]. 日用化学工业(中英文), 2025, 55(2): 225-234.
Chujie Zhao,Liqing Wu,Qiuxing He,Zheng Yang,Lvyangguang Ye,Lihong Yuan. Current status of sea cucumber aquaculture and the research progress on skincare benefits in China[J]. China Surfactant Detergent & Cosmetics, 2025, 55(2): 225-234.
"
Category | Active ingredient | Action pathway | Reference |
---|---|---|---|
Saponin | Phospholipids rich in eicosapentaenoic acid (EPA’s PL) | EPA’s PL exerts significant antioxidant effects by restoring down-regulated Bcl-2 mRNA levels and up-regulating Bax, Caspase-9, and Caspase-3 mRNA expression to inhibit the mitochondrial-dependent apoptosis pathway | [ |
Lysophosphatidylcholine | Treatment of J774A.1 macrophage cells with two types of lysophosphatidylcholine reduces the apoptosis rate induced by H2O2 | [ | |
ganglioside | Ganglioside can restore damage caused by H2O2 or t-BHP while enhancing the activity of superoxide dismutase | [ | |
Amino acids and peptides | Amino acids (Tyr, Trp, Arg, etc.), peptides, and protein hydrolysates | Promotes cell proliferation and differentiation, thereby facilitating tissue repair; stimulates fibroblasts to secrete collagen, enhancing skin cell metabolism and accelerating skin repair; whitens skin and improves wrinkles | [ |
Polyunsaturated fatty acids | n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) | Polyunsaturated fatty acids have antioxidant capabilities and immune-modulating effects; EPA and DHA contribute to skin repair | [ |
Polysaccharides | Sulfated fucoidan, sulfated chondroitin sulfate from seaweed, sulfated polysaccharide FCS | It reduces inflammation and oxidative stress; inhibits cellular melanin synthesis; moisturizes and hydrates the skin | [ |
Glycosaminoglycans | The effects include anticancer and antitumor properties, inflammation inhibition and pain relief, acceleration of skin tissue repair, reduction of blood glucose and blood viscosity, prevention of blood clotting, regulation of lipid profile, lowering of triglycerides and cholesterol, anti-aging benefits, and antiviral and radioprotective effects | [ | |
Vitamins | Vitamin A, Vitamin B | Vitamin A promotes cell renewal and antioxidation, while Vitamin B enhances skin barrier function, evens skin tone, and has moisturizing and anti-inflammatory effects, collectively improving skin quality | [ |
"
Main classification numbers in related fields | Concrete name | Number of sea cucumber patents/pieces |
---|---|---|
A23L | Preparation or Treatment of foods or non-alcoholic beverages | 1 894 |
A01K | Equipment and methods for animal husbandry, care of birds, fish, insects; fishing; breeding animals or obtaining their products | 855 |
A61K | Cosmetics or pharmaceutical preparations containing active ingredients | 820 |
A61P | Specific therapeutic activity of chemical compounds or medicinal preparations | 606 |
A23K | Animal feeds, methods for production thereof | 253 |
A22C | Processing of meat, poultry, or fish; preservation thereof | 214 |
A23P | Preservation of meat, poultry, fish, eggs, fruit, vegetables, and edible seeds; Chemical Ripening of fruit or vegetables; Preservation of jams or jellies; preservation, stabilization, or emulsification of edible fats or oils not covered by other single subclasses | 190 |
A23B | Shaping or working on edible pastes or doughs | 187 |
C12P | Fermentation or enzyme-using processes to synthesize a desired chemical compound or composition or to separate optical isomers from a racemic mixture | 181 |
C07K | Peptides | 174 |
[1] | Yan Longjie. Study on collagen and autolysis-related proteases in sea cucumber (Stichopus japonicas)[D]. Xiamen: Jimei University, 2019. |
[2] | Liu Xiaofang. Analysis of regional differences in the nutritional composition of sea cucumber and study on the activity of phospholipids[D]. Qingdao: Ocean University of China, 2014. |
[3] | Ru Xiaoshang, Zhang Libin, Li Xiaoni, et al. Development strategies for the sea cucumber industry in China[J]. Shandong: Journal of Oceanology and Limnology, 2019, 37(1): 300-312. |
[4] | Liang Q K, Ahmed F, Zhang M S, et al. In vivo and clinical studies of sea cucumber-derived bioactives for human health and nutrition from 2012-2021[J]. Frontiers in Marine Science, 2022. |
[5] |
Ban E, Song E J. Recent developments and applications of capillary electrophoresis with laser-induced fluorescence detection in biological samples[J]. Journal of Chromatography B, 2013, 929: 180-186.
doi: 10.1016/j.jchromb.2013.04.028 pmid: 23685428 |
[6] | Zhao Bin, Li Chenglin, Zhou Hongxue, et al. Study on green development countermeasures of sea cucumber industry[J]. China Marine Economy, 2021, 6(1): 22-42. |
[7] | Feng Jianhui. Study on the anti-inflammatory activity and mechanism of sea cucumber vitellin[D]. Wuxi: Jiangnan University, 2022. |
[8] |
Lu Zhiqiang, Sun Na, Liu Dong, et al. Production of bioactive peptides from sea cucumber and its potential health benefits: A comprehensive review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(25): 7607-7625.
doi: 10.1021/acs.jafc.2c02696 pmid: 35715003 |
[9] | Han Suang. Screening of sea cucumber protein fermentation strains and optimization of conditions[D]. Shanghai: Shanghai Jiao Tong University, 2021. |
[10] | Xu Cheng, Zhang Rui, Wen Zhiyou. Bioactive compounds and biological functions of sea cucumbers as potential functional foods[J]. Journal of Functional Foods, 2018, 49: 73-84. |
[11] | Ru Ruizhen, Guo Yangzheng, Mao Juanxuan, et al. Cancer cell inhibiting sea cucumber (Holothuria leucospilota) protein as a novel anti-cancer drug[J]. Nutrients, 2022, 14(4): 786. |
[12] | Xing Lili, Sun Lina, Liu Shilin, et al. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus[J]. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 2017, 23: 17-26. |
[13] | Ye Jialan, Lv Daofei, Zhou Pingjun, et al. Study on extraction and activity of sea cucumber collagen[J]. Biochemical, 2021, 7(6): 161-163. |
[14] | Yu Yihao. Study on the anti-fatigue effect and mechanism of sea cucumber peptide[D]. Wuxi: Jiangnan University, 2021. |
[15] | Lu Zhiqiang, Lv Renzhi, Dong Liu, et al. Sea cucumber peptides protect against memory impairment by regulating dopamine/serotonin metabolization and synapse plasticity of mice hippocampus[J]. Journal of Functional Foods, 2023, 108: 105732. |
[16] | Yin Haowen, Hur Sun Jin, Zhang Tianqi, et al. Sea cucumber intestinal osteotropic peptide promotes tibial fracture healing in osteoporotic mice by promoting glutamine metabolism[J]. Food Bioscience, 2024, 60: 104370. |
[17] | Hossain A, Dave D, Shahidi F. Antioxidant potential of sea cucumbers and their beneficial effects on human health[J]. Marine Drugs, 2022, 20(8): 521. |
[18] | Lu Zhanhui, Bai Yangqiu, Sun Chenyi, et al. Effect of sea cucumber polysaccharide on proliferation and apoptosis of hepatocellular carcinoma cells by regulating JAK2/STAT3/survivin pathway[J]. Chinese Journal of Basic and Clinical Medicine, 2022, 29(7): 875-880. |
[19] | Zhou Dejian. Structural identification and activity study of Acaudina leucoprocta polysaccharide[D]. Zhoushan: Zhejiang Ocean University, 2019. |
[20] | Tang Kui. Analysis of nutritional components and biological activity of polysaccharides in different color types of Stichopus japonicas[D]. Xianyang: Northwest A&F University, 2021. |
[21] | Ru Ruizhen, Chen Gengzhan, Liang Xiaoxia, et al. Sea cucumber derived triterpenoid glycoside frondoside A: A potential anti-bladder cancer drug[J]. Nutrients, 2023, 15(2): 378. |
[22] | Silchenko A S, Kalinovsky A I, Avilov S A, et al. The composition of triterpene glycosides in the sea cucumber psolus peronii: Anticancer activity of the glycosides against three human breast cancer cell lines and quantitative structure-activity relationships (QSAR)[J]. Marine Drugs, 2024, 22(7): 292. |
[23] | Yang Dongda. Isolation, structural identification, immune activity, and application of polysaccharides from sea cucumber viscera[D]. Xiamen: Huaqiao University, 2020. |
[24] | Zhu Qiyuan. Preparation of two sea cucumber polysaccharide components and their effect on improving type 2 diabetes in rats[D]. Guangzhou: South China University of Technology, 2020. |
[25] | Song Zhuoyue. Preparation, characterization and alleviating renal interstitial fibrosis of acidic polysaccharides from Cucumaria frondosa[D]. Guangdong: Guangzhou University of Chinese Medicine, 2020. |
[26] | Zhang Hao. Effects and mechanisms of sea cucumber and its active ingredients on hyperuricemia in mice[D]. Qingdao: Ocean University of China, 2014. |
[27] | Zhong Jingshi, Zhang Jian, Wang Gongming, et al. Study on the preparation and structural analysis of sea cucumber saponins[J]. Marine Science, 2022, 46(4): 133-142. |
[28] | Zhang Ling, Dong Jingyuan, Chen Yongde, et al. Saponins from sea cucumber residue resist cyclophosphamide-induced immunosuppression in mice through nucleotide-binding oligomerization domain-like receptor signaling pathway[J]. Food Science, 2022, 43(21): 191-202. |
[29] | Ju Shengnan, Xu Huijing, Wang Yuming, et al. Effects of Holothurin A and Echinoside A on uric acid metabolism in obese mice[J]. Food Industry Technology, 2021, 42(21): 385-391. |
[30] | Soto-Vásquez M R, Alvarado-García P A A, Jara-Aguilar D R, et al. Anticancer and neuroprotective effects of the triterpene glycosides from sea cucumber holothuria imitans[J]. Pharmacognosy Journal, 2023, 15(1). |
[31] |
Masre S F, Yip G W, Sirajudeen K N S, et al. Quantitative analysis of sulphated glycosaminoglycans content of Malaysian sea cucumber Stichopus hermanni and Stichopus vastus[J]. Natural Product Research, 2012, 26(7): 684-689.
doi: 10.1080/14786419.2010.545354 pmid: 21859370 |
[32] |
Yu Long, Xue Changhu, Chang Yaoguang, et al. Structure elucidation of fucoidan composed of a novel tetrafucose repeating unit from sea cucumber Thelenota ananas[J]. Food Chemistry, 2014, 146: 113-119.
doi: 10.1016/j.foodchem.2013.09.033 pmid: 24176321 |
[33] |
Kim S J, Park S Y, Hong S M, et al. Skin whitening and anti-corrugation activities of glycoprotein fractions from liquid extracts of boiled sea cucumber[J]. Asian Pacific Journal of Tropical Medicine, 2016, 9(10): 1002-1006.
doi: S1995-7645(16)30162-6 pmid: 27794379 |
[34] |
Wu Fengjuan, Xue Yong, Liu Xiaofang, et al. The protective effect of eicosapentaenoic acid-enriched phospholipids from sea cucumber Cucumaria frondosa on oxidative stress in PC12 cells and SAMP8 mice[J]. Neurochemistry International, 2014, 64: 9-17.
doi: 10.1016/j.neuint.2013.10.015 pmid: 24231470 |
[35] | Nishikawa Y, Furukawa A, Shiga I, et al. Cytoprotective effects of lysophospholipids from sea cucumber Holothuria atra[J]. PLoS One, 2015, 10(8): e0135701. |
[36] | Senadheera T R L, Dave D, Shahidi F. Sea cucumber derived type Ⅰ collagen: A comprehensive review[J]. Marine Drugs, 2020, 18(9): 471. |
[37] | Yu Haibo, Gao Qinfeng, Dong Shuanglin, et al. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka)[J]. Fish and Shellfish Immunology, 2016, 54: 211-219. |
[38] | Bandaranayake W M, Rocher A D. Role of secondary metabolites and pigments in the epidermal tissues, ripe ovaries, viscera, gut contents and diet of the sea cucumber Holothuria atra[J]. Marine Biology, 1999, 133: 163-169. |
[39] | Kwon T R, Oh C T, Bak D H, et al. Effects on skin of Stichopus japonicus viscera extracts detected with saponin including Holothurin A: Down-regulation of melanin synthesis and up-regulation of neocollagenesis mediated by ERK signaling pathway[J]. Journal of Ethnopharmacology, 2018, 226: 73-81. |
[40] |
Kiew P L, Don M M. Jewel of the seabed: sea cucumbers as nutritional and drug candidates[J]. International Journal of Food Sciences and Nutrition, 2012, 63(5): 616-636.
doi: 10.3109/09637486.2011.641944 pmid: 22149726 |
[41] | Maskur M, Sayuti M, Widyasari F, et al. Bioactive compound and functional properties of sea cucumbers as nutraceutical products[J]. Reviews in Agricultural Science, 2024, 12: 45-64. |
[42] | Xu Jie, Wang Jingfeng, Pang Long, et al. Comparison of chemical constituents and hypolipidemic effects of Mexican and Philippine sea cucumbers[J]. Shandong: Journal of Ocean University of China (Natural Science Edition), 2007 (5): 723-727. |
[43] | Jeon M J, Kim E J, Kim G T, et al. Whitening effect and skin regeneration effect of red sea cucumber extract[J]. Journal of Life Science, 2018, 28(6): 681-687. |
[44] | Siahaan E A, Pangestuti R, Munandar H, et al. Cosmeceuticals properties of sea cucumbers: Prospects and trends[J]. Cosmetics, 2017, 4(3): 26. |
[45] | Yu Ping, Yi Minghua, Huang Xingxing, et al. Preparation, antioxidant activity and protective effect on nerve cell injury of collagen hydrolysate of sea cucumber from the east China sea[J]. Chinese Journal of Food, 2018, 18(12): 89-98. |
[46] | Li Di, Li Lin, Xu Teng, et al. Effect of low molecular weight oligopeptides isolated from sea cucumber on diabetic wound healing in db/db mice[J]. Marine Drugs, 2018, 16(1): 16. |
[47] | Zheng Zhihong, Sun Na, Lu Zhiqiang, et al. The potential mechanisms of skin wound healing mediated by tetrapeptides from sea cucumber[J]. Food Bioscience, 2023, 53: 102742. |
[48] | Alves A, Sousa E, Kijjoa A, et al. Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics[J]. Molecules, 2020, 25(11): 2536. |
[49] | Khotimchenko Y. Pharmacological potential of sea xucumbers[J]. International Journal of Molecular Sciences, 2018, 19(5): 1342. |
[50] | Rai S, Acharya-Siwakoti E, Kafle A, et al. Plant-derived saponins: a review of their surfactant properties and applications[J]. Sci., 2021, 3(4): 44. |
[1] | 杲款款, 杨素珍, 韩婷婷, 李燕, 袁春颖, 毛欣宇. 王浆酸及其护肤功效的研究进展[J]. 日用化学工业(中英文), 2024, 54(2): 209-215. |
[2] | 顾薇薇. 视觉效应下日用护肤品包装元素优化设计方法[J]. 日用化学工业(中英文), 2023, 53(9): 1094-1100. |
[3] | 宋子欣, 孙倩茹, 方嘉璇, 王昌涛, 李萌, 王冬冬. 石榴皮主要活性成分及其在化妆品中的应用研究进展[J]. 日用化学工业(中英文), 2023, 53(10): 1211-1219. |
[4] | 刘慧,李莉,刘婷媛,徐勤科,孙莺,郭朝晖. HPLC法检测婴幼儿与成人护肤品中防腐剂添加情况的研究[J]. 日用化学工业(中英文), 2022, 52(11): 1241-1247. |
[5] | 白鑫,陈雨桐,尚亚卓. 碳酸类护肤品的功效评测[J]. 日用化学工业, 2021, 51(8): 734-740. |
[6] | 程文静,张佳婵,杨依林,石秀芹,王昌涛,安全. 市售护肤品防腐剂使用情况调查及未来发展趋势探究[J]. 日用化学工业, 2021, 51(7): 679-685. |
[7] | 何陵玲,张毅,龚秋君,张青. 痤疮的机理症状及祛痘型护肤品功效类型[J]. 日用化学工业, 2020, 50(5): 336-342. |
[8] | 聂园进泽,罗元,李欣洋,尹雅婷,易帆,孟宏. 红花活性成分的提取及其改善皮肤微循环的功效评价[J]. 日用化学工业, 2019, 49(5): 304-309. |
[9] | 欧阳佩佩,廖雪华,吴科锋,马晓鹂. 海洋来源的美白活性成分的研究进展[J]. 日用化学工业, 2019, 49(4): 264-268. |
[10] | 熊晨阳,许明良,易帆,孟宏,董银卯. 人参不同部位主要活性成分及其在美容护肤方面的研究进展[J]. 日用化学工业, 2019, 49(3): 193-198. |
[11] | 李陆军,彭胜,霍延平,王志宏,杨秋玲,王翔,彭密军. 表面活性剂在植物活性成分提取中的应用[J]. 日用化学工业, 2019, 49(11): 748-752. |
[12] | 白佩灵, 尤雪瑞, 郝雅娟, 张晓明, 杨恒权. 无搅拌条件下的Pickering乳液用于脂肪酶催化合成酯的反应[J]. 日用化学工业, 2018, 48(4): 210-215. |
[13] | 洪婷, 刘晓英, 车飙, 唐健, 刘光荣, 杜志云. 光甘草定对小鼠银屑病模型治疗作用的初步研究[J]. 日用化学工业, 2018, 48(11): 643-646. |
[14] | 沈翠云, 梁超群, 喻丹丹, 曹辉. 聚天冬氨酸钠在护肤品中的应用[J]. 日用化学工业, 2017, 47(2): 82-86. |
[15] | 李丽, 张小慧, 龚盛昭, 陈庆生, 任晗坤, 董银卯. 绿豆萌芽不同部位总酚酸和总黄酮量的测定及其抗氧化能力[J]. 日用化学工业, 2015, 45(7): 393-396. |
|