日用化学工业 ›› 2022, Vol. 52 ›› Issue (8): 797-804.doi: 10.3969/j.issn.1001-1803.2022.08.001
• 基础研究 • 下一篇
王俊霞1,刘建华1,陆小猛1,孙永强2,胡志勇1,朱海林1,*()
收稿日期:
2021-12-21
修回日期:
2022-07-25
出版日期:
2022-08-22
发布日期:
2022-08-24
通讯作者:
朱海林
基金资助:
Wang Junxia1,Liu Jianhua1,Lu Xiaomeng1,Sun Yongqiang2,Hu Zhiyong1,Zhu Hailin1,*()
Received:
2021-12-21
Revised:
2022-07-25
Online:
2022-08-22
Published:
2022-08-24
Contact:
Hailin Zhu
摘要:
通过表面张力法研究一种含噻二唑季铵盐表面活性剂(MTOTB)在1 mol/L HCl溶液中的表面活性;通过电化学测试、静态失重和表面形貌分析研究MTOTB及相应的2-巯基-5-甲基-1,3,4-噻二唑(MMTD)在1 mol/L HCl溶液中对Q235碳钢的缓蚀性能。结果表明,MTOTB在1 mol/L HCl溶液中的临界胶束浓度为0.36 mmol/L;当添加浓度为0.5 mmol/L时,MTOTB对在1 mol/L HCl溶液中浸泡48 h碳钢片的缓蚀率可达95.34%,同样条件下,MMTD对碳钢的缓蚀率为78.34%,说明MTOTB对碳钢的腐蚀抑制效率显著优于MMTD。SEM-EDS表明,MTOTB可以吸附在碳钢表面,有效抑制碳钢片的腐蚀。
中图分类号:
王俊霞,刘建华,陆小猛,孙永强,胡志勇,朱海林. 含噻二唑季铵盐表面活性剂对Q235钢的缓蚀性能[J]. 日用化学工业, 2022, 52(8): 797-804.
Wang Junxia,Liu Jianhua,Lu Xiaomeng,Sun Yongqiang,Hu Zhiyong,Zhu Hailin. Corrosion inhibition effect of a quaternary ammonium surfactant containing thiadiazole on Q235 steel[J]. China Surfactant Detergent & Cosmetics, 2022, 52(8): 797-804.
表 2
电化学阻抗谱拟合数据"
c/ (mmol/L) | Rs/ (Ω·cm2) | Cf / (μF/cm2) | Rf / (Ω·cm2) | Cdl/ (μF/cm2) | Rct/ (Ω·cm2) | Rp/ (Ω·cm2) | ηeis/% | |
---|---|---|---|---|---|---|---|---|
MTOTB | 0 | 1.366 | 49.23 | 4.79 | 79.28 | 20.41 | 25.20 | — |
0.01 | 1.221 | 33.70 | 11.57 | 29.56 | 33.12 | 44.69 | 43.61 | |
0.1 | 1.251 | 18.43 | 15.16 | 16.62 | 162.00 | 177.16 | 85.76 | |
0.2 | 1.234 | 18.33 | 18.97 | 16.52 | 225.40 | 244.37 | 89.69 | |
0.5 | 1.213 | 15.46 | 11.54 | 28.50 | 328.10 | 339.64 | 92.58 | |
1.0 | 1.218 | 14.46 | 14.43 | 25.46 | 407.80 | 422.23 | 94.03 | |
MMTD | 0.01 | 0.010 | 0.59 | 1.00 | 16.50 | 33.81 | 34.81 | 27.61 |
0.1 | 0.020 | 0.35 | 1.23 | 19.58 | 39.38 | 40.61 | 37.95 | |
0.2 | 0.010 | 0.24 | 1.26 | 16.28 | 80.62 | 81.88 | 69.92 | |
0.5 | 0.010 | 0.44 | 1.04 | 9.61 | 123.00 | 124.04 | 79.68 | |
1.0 | 0.057 | 0.37 | 1.00 | 5.56 | 145.20 | 146.20 | 82.76 |
表 3
动电位极化曲线拟合数据"
c/(mmol/L) | Ecorr/V | icorr / (μA/cm2) | ba/ (V/dec) | bc/ (V/dec) | ηp/% | |
---|---|---|---|---|---|---|
MTOTB | 0 | -0.428 | 338.32 | 0.079 | -0.131 | — |
0.01 | -0.451 | 207.11 | 0.087 | -0.152 | 38.78% | |
0.1 | -0.446 | 72.81 | 0.074 | -0.129 | 78.48% | |
0.2 | -0.433 | 37.51 | 0.058 | -0.122 | 88.91% | |
0.5 | -0.431 | 26.44 | 0.054 | -0.117 | 92.18% | |
1.0 | -0.435 | 23.00 | 0.046 | -0.114 | 93.20% | |
MMTD | 0.01 | -0.442 | 283.12 | 0.058 9 | 0.089 9 | 16.32% |
0.1 | -0.448 | 200.16 | 0.059 5 | 0.093 7 | 40.84% | |
0.2 | -0.445 | 156.18 | 0.068 8 | 0.108 2 | 53.84% | |
0.5 | -0.444 | 72.60 | 0.088 4 | 0.135 | 78.54% | |
1.0 | -0.446 | 48.12 | 0.095 5 | 0.122 | 85.78% |
[1] |
Saha S K, Dutta A, Ghosh P, et al. Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 M HCl medium: a combined experimental and theoretical approach[J]. Physical Chemistry Chemical Physics Pccp, 2015, 17 (8) : 5679-5690.
doi: 10.1039/C4CP05614K |
[2] |
Raman Kumar, Hansung Kim, Gurmeet Singh. Experimental and theoretical investigations of a newly synthesized azomethine compound as inhibitor for mild steel corrosion in aggressive media: A comprehensive study[J]. Journal of Molecular Liquids, 2018, 259: 199-208.
doi: 10.1016/j.molliq.2018.02.123 |
[3] |
Macedo R, Marques N, Paulucci L, et al. Water-soluble carboxymethylchitosan as green scale inhibitor in oil wells[J]. Carbohydrate Polymers, 2019, 215: 137-142.
doi: 10.1016/j.carbpol.2019.03.082 |
[4] | Yang Tianqi. Research and application of corrosion inhibitor in oilfield injection water system[D]. Xi’an: Xi’an Shiyou University, 2016. |
[5] |
Mahdavian M, Ashhari S. Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution[J]. Electrochimica Acta, 2009, 55 (5) : 1720-1724.
doi: 10.1016/j.electacta.2009.10.055 |
[6] |
Zhang Weiwei, Li Huijing, Wang Yiwei, et al. Gravimetric, electrochemical and surface studies on the anticorrosive properties of 1-(2-pyridyl)-2-thiourea and 2-(imidazol-2-yl)-pyridine for mild steel in hydrochloric acid[J]. New Journal of Chemistry, 2018, 42 (15) : 12649-12665.
doi: 10.1039/C8NJ01762J |
[7] |
Priyanka Singh, Vandana Srivastava, Quraishi M A. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: Electrochemical, SEM, AFM, and XPS studies[J]. Journal of Molecular Liquids, 2016, 216: 164-173.
doi: 10.1016/j.molliq.2015.12.086 |
[8] | Guo Naini, Han Yinuo, Kong Yu, et al. Synthesis and application of a series of imidazole Gemini surfactants[J]. Leather and Chemical Industry, 2021, 38 (2) : 27-33. |
[9] |
Deyab M A. Efficiency of cationic surfactant as microbial corrosion inhibitor for carbon steel in oilfield saline water[J]. Journal of Molecular Liquids, 2018, 255: 550-555.
doi: 10.1016/j.molliq.2018.02.019 |
[10] |
Chen Gang, Lin Jiao, Liu Qiaona, et al. Corrosion inhibition and the structure-efficiency relationship study of two cationic surfactants[J]. Anti-Corrosion Methods and Materials, 2019, 66 (4) : 388-393.
doi: 10.1108/ACMM-10-2017-1856 |
[11] |
Zhao Jingmao, Gu Feng, Zhao Tong, et al. Corrosion inhibition performance of imidazoline derivatives with different pedant chains under three flow rates in high-pressure CO2 environment[J]. Research on Chemical Intermediates, 2016, 42 (6) : 5753-5764.
doi: 10.1007/s11164-015-2401-y |
[12] |
Ismail Abdelrhman Aiad, Hafiz A A, El-Awady M Y, et al. Some imidazoline derivatives as corrosion inhibitors[J]. Journal of Surfactants and Detergents, 2010, 13 (3) : 247-254.
doi: 10.1007/s11743-009-1168-9 |
[13] |
Okafor P C, Liu C B, Liu X, et al. Inhibition of CO2 corrosion of N80 carbon steel by carboxylic quaternary imidazoline and halide ions additives[J]. Journal of Applied Electrochemistry, 2009, 39 (12) : 2535-2543.
doi: 10.1007/s10800-009-9948-5 |
[14] |
Hu Zhiyong, Meng Yanbin, Ma Xuemei, et al. Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M HCl[J]. Corrosion Science, 2016, 112: 563-575.
doi: 10.1016/j.corsci.2016.08.012 |
[15] |
Zhu Hailin, Chen Xiaojie, Li Xiaofen, et al. 2-aminobenzimidazole derivative with surface activity as corrosion inhibitor of carbon steel in HCl: Experimental and theoretical study[J]. Journal of Molecular Liquids, 2020, 297: 111720.
doi: 10.1016/j.molliq.2019.111720 |
[16] |
Ashish K S, Quraishi M A. The effect of some bis-thiadi-azole derivatives on the corrosion of mild steel in hydro-chloric acid[J]. Corrosion Science, 2010, 52: 1373-1358.
doi: 10.1016/j.corsci.2010.01.007 |
[17] |
Qafsaoui W, Et Taouil A, Kendig, M W, et al. Corrosion protection of bronze using 2, 5-dimercapto-1, 3, 4-thiadiazole as organic inhibitor: spectroscopic and electrochemical investigations[J]. Journal of Applied Electrochemistry, 2019, 49 (8) : 823-837.
doi: 10.1007/s10800-019-01329-8 |
[18] | Zhu Hailin, Lu Xiaomeng, Li Xiaofen, et al. Synthesis of thiadiazole quaternary ammonium salt surfactants and research on corrosion inhibition and sterilization performance[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42 (1) : 51-59. |
[19] |
M El Azzouzi, K Azzaoui, I Warad, et al. Moroccan, Mauritania, and Senegalese gum Arabic variants as green corrosion inhibitors for mild steel in HCl: Weight loss, electrochemical, AFM and XPS studies[J]. Journal of Molecular Liquids, 2022, 347: 118354.
doi: 10.1016/j.molliq.2021.118354 |
[20] | Zhu Hailin, Hu Zhiyong, Wang Jianlong, et al. Synthesis and surface activity of a series of hydroxy-sulfobetaine surfactants[J]. China Surfactant Detergent & Cosmetics, 2012, 42 (6) : 405-409. |
[21] | Wang Qing, Ma Xuemei, Shi Haiyan, et al. Corrosion inhibition of 45# carbon steel by benzimidazole derivatives in 1mol/L HCl solution[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35 (1) : 49-54. |
[22] |
Jia Ru, Tan Jielong, Jin Peng, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm[J]. Corrosion Science, 2018, 130: 1-11.
doi: 10.1016/j.corsci.2017.10.023 |
[23] |
Francisco Javier Rodríguez-Gómez, Maira Perez Valdelamar, Araceli Espinoza Vazquez, et al. Mycophenolic acid as a corrosion inhibitor of carbon steel in 3% wt. NaCl solution. An experimental and theoretical study[J]. Journal of Molecular Structure, 2018, 1183: 168-181.
doi: 10.1016/j.molstruc.2018.12.035 |
[24] |
Marta Pakiet, Iwona Kowalczyk, Rafael Leiva Garcia, et al. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel[J]. Bioelectrochemistry, 2019, 128: 252-262.
doi: S1567-5394(18)30581-4 pmid: 31048108 |
[25] |
Yu Peng, Anthony E Hughes, Glen B Deacon, et al. A study of rare-earth 3-(4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions[J]. Corrosion Science, 2018, 145: 199-211.
doi: 10.1016/j.corsci.2018.09.022 |
[26] |
Zhu Yakun, Free M L, Woollam R, et al. A review of surfactants as corrosion inhibitors and associated modeling[J]. Progress in Materials Science, 2017, 90: 159-223.
doi: 10.1016/j.pmatsci.2017.07.006 |
[27] |
Ahamad I, Prasad R, Quraishi M A. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media[J]. Corrosion Science, 2010, 52 (4) : 1472-1481.
doi: 10.1016/j.corsci.2010.01.015 |
[28] | Li Jiyong, Zhao Junqiao, Shao Hongyun, et al. Synthesis of thioureidoimidazoline corrosion inhibitor and its corrosion inhibition performance[J]. Oilfield Chemistry, 2021, 38 (1) : 152-156, 183. |
[1] | 张志升, 沈产量, 李建勋, 刘延强, 韩薇薇, 董三宝. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[2] | 李国峰, 刘凯楠, 莫文龙, 马腾. 页岩油藏渗吸驱油剂体系性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 250-258. |
[3] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[4] | 张红梅, 张永民. [芥酰胺苯甲酸][胆碱]离子液体表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 149-155. |
[5] | 刘佩, 潘婷, 裴晓梅, 宋冰蕾, 蒋建中, 崔正刚, Bernard P. Binks. 非离子-阴离子Bola型表面活性剂和纳米SiO2颗粒协同稳定的双重响应型O/W乳状液[J]. 日用化学工业(中英文), 2024, 54(1): 1-15. |
[6] | 艾浩康, 姜亚洁, 王亚魁, 张璐, 耿涛. 硬脂酸酯双子季铵盐的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(1): 16-23. |
[7] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
[8] | 常世腾, 蔡小军, 郑延成, 刘雪瑾, 易晓, 蒋筑阳. 琥珀酸酯磺酸盐物化特性及其与甜菜碱复配体系界面性能[J]. 日用化学工业(中英文), 2023, 53(9): 989-998. |
[9] | 徐德荣,连威,熊金钊,康万利. 致密油藏表面活性剂渗吸影响因素研究[J]. 日用化学工业(中英文), 2023, 53(8): 857-864. |
[10] | 牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924. |
[11] | 王佳锐,魏孝承,张春雪,陈昢圳,郑向群,王强. 水环境样品中表面活性剂检测方法研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 925-934. |
[12] | 强学峰, 张莉, 郑斌, 侯倩倩, 燕坤. 无机盐KCl对离子型表面活性剂泡沫演化规律研究[J]. 日用化学工业(中英文), 2023, 53(7): 733-741. |
[13] | 邢环宇, 贾丽华, 赵振龙, 杨瑞, 郭祥峰. 含萘酰亚胺和烷基疏水基的新型表面活性剂合成及性能[J]. 日用化学工业(中英文), 2023, 53(7): 742-747. |
[14] | 付江鹏, 杜金梅, 苗大刚, 肖国威, 蒋阳, 许长海. 表面活性剂在活化氧漂体系去除纺织品有色污渍中的作用[J]. 日用化学工业(中英文), 2023, 53(5): 511-516. |
[15] | 卓文珊, 冯顺卿, 唐建锋. 高效液相色谱法-蒸发光散射检测器测定表面活性剂中月桂酰基甘氨酸钠含量[J]. 日用化学工业(中英文), 2023, 53(2): 220-225. |
|