日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (12): 1443-1450.doi: 10.3969/j.issn.2097-2806.2023.12.012
胡贝1,2,李丽霞1,2,丁晓萍1,2,吕稳1,2,*(),李晓健1,2,李琼1,2
收稿日期:
2022-12-14
修回日期:
2023-11-28
出版日期:
2023-12-22
发布日期:
2024-01-12
基金资助:
Bei Hu1,2,Lixia Li1,2,Xiaoping Ding1,2,Wen Lv1,2,*(),Xiaojian Li1,2,Qiong Li1,2
Received:
2022-12-14
Revised:
2023-11-28
Online:
2023-12-22
Published:
2024-01-12
Contact:
* Tel.: +86-27-87705269, E-mail: 摘要:
概述了化妆品中添加抗感染类药物的作用及对人体的安全风险,液质联用技术常用的质量分析器种类、特点及应用领域。介绍了《化妆品安全技术规范》(2015年版)中化妆品抗感染类药物的检测方法,并列出了国内外文献报道的应用液相色谱-三重四极杆串联质谱、实时直接分析-高分辨质谱、超高效液相色谱-四极杆/静电场轨道阱高分辨质谱、超高效液相色谱-线性离子阱/静电场轨道阱高分辨质谱和超高效液相色谱-四极杆-飞行时间高分辨质谱检测抗感染类药物的情况,并包含了《化妆品安全技术规范》(2015年版)中尚无检测方法的三种物质,分别是丹诺沙星、甲氧苄啶和洛硝达唑。本文可以为行业相关科研人员提供参考资料,为相关检验检测机构的高效筛查和风险监测提供方向,为标准检测方法的制修订提供科学依据。最后对化妆品中抗感染类药物的检测方法的开发趋势进行了介绍。
中图分类号:
胡贝, 李丽霞, 丁晓萍, 吕稳, 李晓健, 李琼. 液质联用技术在化妆品抗感染类药物检测中的应用[J]. 日用化学工业(中英文), 2023, 53(12): 1443-1450.
Bei Hu, Lixia Li, Xiaoping Ding, Wen Lv, Xiaojian Li, Qiong Li. Application of liquid chromatography-mass spectrometry in the detection of anti-infective drugs in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2023, 53(12): 1443-1450.
表 1
《化妆品安全技术规范》(2015年版)中涉及的抗感染类药物"
方法编号 | 分析仪器 | 检测的抗感染类药物 |
---|---|---|
2.1 | 液相色谱-三重四极杆质谱联用仪 | 氟康唑、酮康唑、萘替芬、联苯苄唑、克霉唑、益康唑、灰黄霉素、咪康唑和环吡酮胺 |
2.2 | 高效液相色谱仪 | 盐酸美满霉素、甲硝唑、二水土霉素、盐酸四环素、盐酸金霉素、盐酸多西环素和氯霉素 |
2.3 | 液相色谱-三重四极杆质谱联用仪 | 依诺沙星、氟罗沙星、氧氟沙星、诺氟沙星、培氟沙星、环丙沙星、恩诺沙星、沙拉沙星、双氟沙星和莫西沙星 |
2.35 | 液相色谱-三重四极杆质谱联用仪 | 甲硝唑、磺胺吡啶、磺胺甲嘧啶、磺胺甲二唑、磺胺甲氧嗪、磺胺氯哒嗪、磺胺甲噁唑、依诺沙星、沙拉沙星、培氟沙星、氧氟沙星、氟罗沙星、双氟沙星、莫西沙星、诺氟沙星、环丙沙星、恩诺沙星、呋喃它酮、林可霉素、克林霉素、克林霉素磷酸酯、四环素、多西环素、米诺环素、土霉素、金霉素、阿奇霉素、克拉霉素、罗红霉素、氯霉素、螺内酯、灰黄霉素、克霉唑、酮康唑、氟康唑和联苯苄唑 |
表 2
液相色谱-三重四极杆质谱法检测抗感染类药物"
检测种数 | 色谱柱 | 质谱模式 | 检出限/(μg/g) | 定量限/(μg/g) | 回收率/% | 文献 |
---|---|---|---|---|---|---|
19种 | Agilent SB C18 (2.1 mm×100 mm, 1.7 μm) | ESI+ | 0.001 | — | 85~115 | [ |
4种 | Welch Ultimate XB C18 (4.6 mm×150 mm, 5 μm) | ESI+ | — | 0.005 | 82.5~104.4 | [ |
7种 | BEH C18 (50 mm×2.1 mm, 1.7 μm) | ESI+ | 0.02~0.50 | — | 88.0~97.2 | [ |
14种 | Agilent Zorbax SB-C18 (100 mm×2.1 mm, 3.5 μm) | ESI+ | <0.008 | — | 87.5~115.5 | [ |
16种 | Waters ACQUITY BEH C18 (100 mm×2.1 mm, 1.7 μm) | ESI+ | 0.05~0.50 | 0.25~2.50 | 86.0~112.4 | [ |
38种 | Waters ACQUITY BEH C18 (50 mm×2.1 mm, 1.7 μm) | ESI+,ESI- | 0.000 3~0.24 | 0.001 1~0.80 | 79.0~119.8 | [ |
36种 | Agilent SB-C18 (2.1 mm×100 mm, 1.8 μm) | ESI+,ESI- | 0.20~0.50 | — | 85~110 | [ |
41种 | Waters ACQUITY BEH C18 (2.1 mm×100 mm, 1.7 μm) | ESI+,ESI- | 0.01~0.50 | — | 72.3~112.5 | [ |
8种 | Zorbax Eclipse Plus C18 (3.0 mm×100 mm, 3.5 μm) | ESI+ | 0.001~0.02 | — | 80.0~106.9 | [ |
2种 | CNW Athena C18-WP (100 mm×2.1 mm, 3 μm) | ESI+ | 0.10 | 0.30 | 86.1~ 98.6 | [ |
20种 | Agilent EC-C18(Poroshell 120) (3.0 mm×50 mm, 2.7 μm) | ESI+ | 0.01~0.50 | 0.05~1.00 | 71.5~117.6 | [ |
15种 | Thermo Hypersil GOLD C18 (2.1 mm×100 mm, 1.9 μm) | ESI+ | 0.15 | 0.50 | 80.1~104.9 | [ |
9种 | Agilent Zorbax SB-C18 (150 mm×2.1 mm, 3.5 μm) | ESI+ | 0.010 | 0.030 | 83.1~110.5 | [ |
10种 | Agilent Zorbax SB-C18 (2.1 mm×100 mm, 1.8 μm) | ESI+ | 0.1~0.2 | — | 84.3~99.2 | [ |
10种 | Agilent Zorbax SB-C18 (4.6 mm×75 mm, 3.5 μm) | ESI+ | 0.01~0.04 | 0.02~0.1 | 76.8~96.9 | [ |
40种 | Luna C18 (150 mm × 4.6 mm, 3 μm) | ESI+ | 0.025~0.25 | 0.075~0.75 | 73.8~109.1 | [ |
8种 | Agilent Zorbax SB-C8 (100 mm × 2.1 mm, 3.5 μm) | ESI+ | 1~95 | 5~475 | 91.71~101.66 | [ |
20种 | Merck ZIC? -HILIC C18 (50 mm × 4.6 mm, 5 μm) | ESI+ | 0.9~201 | 5~401 | — | [ |
表 3
超高效液相色谱-线性离子阱/静电场轨道阱高分辨质谱法检测抗感染药物"
检测种数 | 提取净化方法 | 色谱柱 | 流动相及流速 | 质谱模式 | 检出限/(μg/kg) | 定量限/(μg/kg) | 回收率/% | 文献 |
---|---|---|---|---|---|---|---|---|
37种 | 甲醇超声提取 | Waters ACQUITY BEH C18 (2.1 mm×100 mm, 1.7 μm) | 正离子模式:含0.1%甲酸的5 mmol/L乙酸铵溶液-乙腈梯度洗脱;负离子模式:5 mmol/L乙酸铵溶液-乙腈梯度洗脱;流速均为0.25 mL/min | ESI+,ESI- | — | 5~10 | 60~117 | [ |
66种 | 乙腈超声提取 | UPLC C18 (100 mm×2.1 mm, 1.8 μm) | 0.1%甲酸水溶液-乙腈梯度洗脱,0.2 mL/min | ESI+ | 2~4 | 5~10 | 58.2~119.1 | [ |
36种 | 甲醇超声提取,正己烷除脂 | Waters ACQUITY BEH C18 (2.1 mm×100 mm, 1.7 μm) | 含5 mmol/L乙酸铵和0.1%甲酸的水溶液-乙腈梯度洗脱,0.25 mL/min | ESI+ | 5~10 | — | 54.15~117.55 | [ |
表 4
超高效液相色谱-四极杆-飞行时间高分辨质谱检测抗感染药物"
检测种数 | 提取净化方法 | 色谱柱 | 流动相及流速 | 质谱 模式 | 检出限/(μg/g) | 定量限/(μg/g) | 回收率/% | 文献 |
---|---|---|---|---|---|---|---|---|
8种 | 甲醇超声提取 | Waters ACQUITY BEH C18 (100 mm× 2.1 mm, 1.7 μm) | 乙腈-含0.05%甲酸的2 mmol/L 甲酸铵水溶液梯度洗脱,0.35 mL/min | ESI+ | 0.025~0.05 | 0.075~0.15 | 68.6~118.8 | [ |
25种 | 饱和氯化钠分散,0.2%甲酸乙腈超声提取,PSA净化 | Waters ACQUITY HSS T3 (100 mm× 2.1 mm, 1.8 μm) | 正离子模式:含0.1%甲酸的5 mmol/L乙酸铵溶液-含0.1%甲酸的甲醇梯度洗脱;负离子模式:0.005%甲酸水溶液-含0.005%甲酸的甲醇梯度洗脱;流速均为0.35 mL/min | ESI+,ESI- | 0.005~0.15 | 0.015~0.45 | 60.3~130.3 | [ |
23种 | 乙腈超声提取 | Waters ACQUITY HSS T3 (100 mm× 2.1 mm, 1.8 μm) | 0.1%甲酸溶液-0.1%甲酸乙腈梯度洗脱,0.3 mL/min | ESI+ | 0.05~1.36 | 0.16~4.53 | 74.1~125.5 | [ |
[1] | Qi Shangzhong. Research progress on detection methods of hormones and antibiotics in cosmetics[J]. China Cleaning Industry, 2014, 6: 74-77. |
[2] | Chen Jing, Zheng Rong, Mao Beiping, et al. Determination of nineteen quinolone antibiotics in cosmetics by LC-MS/MS[J]. Flavour Fragrance Cosmetics, 2020, 6: 80-85, 90. |
[3] | Cai Yongtong, Xun Zhiqing, Li Xiuying, et al. Simultaneous determination of four imidazole-based antifungal agents in cosmetics by UPLC-MS/MS and QuEChERS[J]. Flavour Fragrance Cosmetics, 2017, 2: 55-58. |
[4] | Wang Tianhao. Research progress of antibiotic detection technology in cosmetics[J]. Yunnan Chemical Technology, 2021, 48 (9) : 13-14, 17. |
[5] | Wei Hualin, Zhou Pu, Jiang Pei, et al. Determination of seven antifungal drugs in cosmetics by high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2018, 28 (16) : 1955-1958. |
[6] | National Medical Products Administration. Safety and Technical Standards for Cosmetics: 2015 Editon[S]. Beijing: Standards Press of China, 2016. |
[7] |
Chen Yuwan, Zhou Wen, Li Xinwei, et al. Research progress of protein-protein interaction based on liquid chromatography mass spectrometry[J]. Acta Chimica Sinica, 2022, 80: 817-826.
doi: 10.6023/A22010055 |
[8] | Cao Houhua, Yu Zhongyi. Research progress on correlation between metabonomics and TCM syndrome and objective evaluation of HPLC-MS[J]. Academic Journal of Shanghai University of Traditional Chinese Medicine, 2016, 30 (6) : 83-90. |
[9] |
Zhu F, Wu X S, Li F, et al. Simultaneous determination of 12 antibacterial drugs in cream disinfection products with EMR-lipid cleanup using ultra-high-performance liquid chromatography tandem mass spectrometry[J]. Analytical Methods, 2019, 11 (32) : 4084-4092.
doi: 10.1039/C9AY00937J |
[10] | Zhang Lu, Li Keqiang, Zhu Hui, et al. Research progress on illegal additions of chemical drugs in health food for weight loss and their detection technologies[J]. Journal of Food Safety and Quality, 2021, 12 (3) : 904-913. |
[11] |
Soares K L, Caldú A S, Barbosa S C, et al. Rapid and cost-effective multiresidue analysis of pharmaceuticals, personal care products, and antifouling booster biocides in marine sediments using matrix solid phase dispersion[J]. Chemosphere, 2021, 267: 129085.
doi: 10.1016/j.chemosphere.2020.129085 |
[12] |
Papageorgiou M, Zioris I, Danis T, et al. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece[J]. Science of the Total Environment, 2019, 694: 133565.
doi: 10.1016/j.scitotenv.2019.07.371 |
[13] | Yang Chenye, Xu Shiwei, Han Wei, et al. Analysis of macrolide antibiotics residues in animal derived food by liquid chromatography-mass spectrometry: a review[J]. Journal of Changzhou University (Natural Science Edition), 2017, 29 (5) : 85-92. |
[14] | Zhan J, Ni M L, Zhao H Y, et al. Multiresidue analysis of 59 nonallowed substances and other contaminants in cosmetics[J]. Separation Science, 2014, 37 (24) : 3684-3690. |
[15] | Tan Juying, Yan Qishuang, Wang Juan, et al. Application of liquid chromatography-mass spectrometry in the analysis of prohibited substances in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2018, 48 (9) : 527-533, 540. |
[16] |
Wu C S, Zhang J L, Qiao Y L, et al. Simultaneous determination of 14 β-lactam antibiotics in cosmetic products by liquid chromatography tandem mass spectrometry method[J]. Chinese Chemical Letters, 2011, 22: 334-337.
doi: 10.1016/j.cclet.2010.09.035 |
[17] | Sha Lina, Yang Guangyong, Mu Xiaojuan, et al. Determination of 16 kinds of anti-infective drugs in cosmetics by LC-MS/MS[J]. China Surfactant Detergent & Cosmetics, 2021, 51 (8) : 802-808. |
[18] | Lu Linling, Qian Yefei, Zhang Bin, et al. Determination of 38 anti-infective drugs in cosmetics by ultra high performance liquid chromatography-tandem mass spectrometry[J]. China Surfactant Detergent & Cosmetics, 2022, 52 (2) : 214-223. |
[19] | Wang Qingling, Qiu Juntao, Zhan Yuecheng, et al. A quick determination of 36 kinds of forbidden anti- infective drugs residue in cosmetics by ultra performance liquid chromatograph-tandem mass spectrometry combined with the dSPE[J]. Farm Products Processing, 2021, 9: 43-47, 53. |
[20] | Wang Xin, Chen Rong. Simultaneous detection of 41 forbidden anti-infective drugs in cream cosmetics by LC-MS /MS[J]. China Pharmacist, 2018, 21 (8) : 1388-1392. |
[21] | Wang Ning, Zhang Huansheng, Sui Yujie, et al. Determine 8 kinds of macrolides and lincomycin antibiotics in cosmetics by UPLC-MS/MS[J]. China Cosmetics Review, 2021, 2: 112-115. |
[22] | Ye Zhuhong, Dai Dan, Zhu Dandan, et al. Determination of lincomycin and clindamycin in cosmetics by HPLC-MS/MS[J]. Flavour Fragrange Cosmetics, 2021, 4: 76-80. |
[23] | Yang Na, Ye Leihai, Ye Jiaming, et al. Simultaneous determination of 20 antibiotic drugs in cosmetices by high performance liquid chromatography-tandem mass spectrometry method of content study[J]. Farm Products Processing, 2019, 4: 50-53. |
[24] | Lu Jian, Xun Zhiqing, Wang Chenxia, et al. Determination of 15 quinolone antibiotics in cosmetics by liquid chromatography tandem mass spectrometry[J]. China Surfactant Detergent & Cosmetics, 2019, 49 (6) : 403-409. |
[25] | Sun Shanshan, Yang Yang, Ma Ming, et al. Determination of nine kinds of prohibited penicillin in cosmetic by HPLC-MS/MS[J]. Flavour Fragrance Cosmetics, 2019, 5: 26-29. |
[26] | Yao Wei, Sun Xuemei, Yang Minghua. Determination of quinolones in cosmetics by liquid chromatograhy- tandem mass spectrometry[J]. Yunnan Chemical Technology, 2019, 46 (3) : 101-103. |
[27] | Zhang Yanhui, Li Lingling, Wang Hongmei. Simultaneous determination of 10 antibiotics in cosmetics by liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2017, 27 (18) : 2600-2602. |
[28] | Xiao Ruina, Li Yuli. Simultaneous determination of 40 antibacterial agents in cosmetics by liquid chromatography tandem mass spectrometry[J]. China Surfactant Detergent & Cosmetics, 2020, 50 (6) : 419-426. |
[29] | Fan Fei, Zheng Yan, Liu Pengming, et al. Simultaneous measurement of eight antifungal drugs in cosmetics by UPLC-MS/MS[J]. Flavour Fragrance Cosmetics, 2022, 1: 55-57. |
[30] | Zhang Junfang. Rapid determination of antibacterial agents in skin care hyaluronic acid by high performance liquid chromatography-tandem mass spectrometry[J]. China Surfactant Detergent & Cosmetics, 2022, 52 (6) : 677-682. |
[31] | Lan Cao, Shao Linzhi, Chen Simin. Rapid determination of chloramphenicol in cosmetics using direct real-time analysis-high resolution mass spectrometry[J]. Journal of Instrumental Analysis, 2019, 38 (12) : 1503-1506. |
[32] | Liao Huayong, Wang Jing, Li Hongyu. Rapid determination of 17 quinolones in cosmetics using ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry[J]. Journal of Instrumental Analysis, 2019, 38 (9) : 1102-1107. |
[33] |
Niu Zengyuan, Luo Xin, Wang Fengmei, et al. Fast screening and confirmation of 89 prohibited compounds in cosmetics using UPLC-LTQ/Orbitrap MS[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37 (3) : 201-212.
doi: 10.7538/zpxb.youxian.2015.0051 |
[34] |
Li Hongying, Shen Huadan, Fang Jiangji, et al. Rapid determination of 66 antibiotics in cosmetics using ultra high performance liquid chromatography-linear ion trap/orbitrap mass spectrometry[J]. Chinese Journal of Chromatography, 2018, 36 (7) : 643-650.
doi: 10.3724/SP.J.1123.2018.01041 |
[35] | Wang Fengmei, Niu Zengyuan, Luo Xini, et al. Screening and confirmation of antibiotics in cosmetics by high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry[J]. Journal of Food Safety and Quality, 2014, 5 (12) : 3911-3921. |
[36] | Zhang Dandan, Ouyang Hui. Progress in qualitative and quantitative analysis of saponins by LC-MS[J]. Progress in Pharmaceutical Sciences, 2017, 41 (8) : 608-613. |
[37] |
Dong Yalei, Niu Shuijiao, Qiao Yashen, et al. Determination of 19 illegally added chemical ingredients in hair loss prevention cosmetics by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry[J]. Chinese Journal of Chromatography, 2022, 40 (4) : 343-353.
doi: 10.3724/SP.J.1123.2021.08019 |
[38] | Li Yangjie, Huang Jiaying, Fang Jihui, et al. Fast screening and confirmation of 73 common prohibited compounds in cosmetics by ultra performance liquid chromatography-quadrupole-time-of-flight high resolution mass spectrometry[J]. Chinese Journal of Chromatography, 2022, 40 (5) : 434-442. |
[39] | Zheng Jiaxin, Jia Changping. Determination of 23 illegally added antibiotics by UPLC-ESI-Q-TOF/MS in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2021, 51 (12) : 1250-1258. |
[40] | Wang Ling, Wang Xinmei, Zhao Zeyuan, et al. Understand the essence of cosmetic quality through date[J]. China Cosmetics Review, 2021 (Z1) : 14-19. |
[41] | Liu Meiyun, Dong Qing, Li Zhu, et al. Analysis of the results of cosmetics sampling and testing in various provinces, municipalities and autonomous regions in China from 2017 to 2019[J]. Guangdong Chemical Industry, 2021, 48 (2) : 71-73. |
[42] | Zhang Xinxin, Gao Yuanhui, Hua Jin, et al. Determination of five kinds of nitroimidazole compound in whelk dispelling cosmetics by liquid chromatography tandem mass spectrometry[J]. China Surfactant Detergent & Cosmetics, 2016, 46 (11) : 661-664, 670. |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|