日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (1): 92-99.doi: 10.3969/j.issn.1001-1803.2023.01.013
收稿日期:
2022-04-25
修回日期:
2022-11-22
出版日期:
2023-01-22
发布日期:
2023-01-31
通讯作者:
*Tel.: +86-13403117268, E-mail: cyrusabc@163.com.
基金资助:
Wang Chunyu1,Wang Huijuan1,*(),Fan Shiqiang2,Liu Yang2
Received:
2022-04-25
Revised:
2022-11-22
Online:
2023-01-22
Published:
2023-01-31
Contact:
*Tel.: +86-13403117268, E-mail: cyrusabc@163.com.
摘要:
木质素是植物中含量仅次于纤维素的第二大天然有机高分子化合物,具有优异的耐腐蚀、耐热、抗菌和抗氧化性能。木质素资源的高效利用对解决化石资源的日益紧缺及环境污染等问题具有重要意义。木质素纳米粒子(LNPs)的出现为木素基高附加值产品的开发与应用开辟了一条新途径,其兼具纳米材料的小尺寸效应、表面效应、界面效应等特性和木质素自身的优异特性,在众多领域都表现出了广泛的潜在应用价值。本文对LNPs的6种制备方法包括:自组装法、界面聚合/交联法、高剪切均质法、超声波法、微生物法和酶解法的特点及原理进行了概述,并对每种方法的产物组成、最终产物状态进行了梳理。随后综述了LNPs在吸附剂、比色探针和复合材料(复合薄膜、复合水凝胶)中的功能化应用研究进展,并对其发展前景进行了展望,以期为LNPs的功能化开发提供思路。
中图分类号:
王春玉, 王惠娟, 范世强, 刘杨. 木质素纳米粒子的功能化应用研究进展[J]. 日用化学工业(中英文), 2023, 53(1): 92-99.
Wang Chunyu, Wang Huijuan, Fan Shiqiang, Liu Yang. Research progress on functional application of lignin nanoparticles[J]. China Surfactant Detergent & Cosmetics, 2023, 53(1): 92-99.
[1] |
Richter A P, Brown J S, Bharti B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nature Nanotechnology, 2015, 10 (9) : 817-823.
doi: 10.1038/nnano.2015.141 pmid: 26167765 |
[2] | Wang Huan, Yang Dongjie, Qian Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38 (1) : 441-455. |
[3] |
Kai D, Tan M J, Chee P L, et al. Towards lignin-based functional materials in a sustainable world[J]. Green Chemistry, 2016, 18 (5) : 1175-1200.
doi: 10.1039/C5GC02616D |
[4] |
Lievonen M, Valle-Delgado J J, Mattinen M-L, et al. A simple process for lignin nanoparticle preparation[J]. Green Chemistry, 2016, 18 (5) : 1416-1422.
doi: 10.1039/C5GC01436K |
[5] |
Chen K, Wang S, Qi Y, et al. State-of-the-art: applications and industrialization of lignin micro/nano particles[J]. ChemSusChem, 2021, 14 (5) : 1284-1294.
doi: 10.1002/cssc.202002441 pmid: 33403798 |
[6] |
Li H, Deng Y, Wu H, et al. Self-assembly of kraft lignin into nanospheres in dioxane-water mixture[J]. Holzforschung, 2016, 70 (8) : 725-731.
doi: 10.1515/hf-2015-0238 |
[7] |
Richter A P, Bharti B, Armstrong H B, et al. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties[J]. Langmuir, 2016, 32 (25) : 6468-6477.
doi: 10.1021/acs.langmuir.6b01088 pmid: 27268077 |
[8] | Cui Shaobo, Lu Zhongyuan, Liu Dechun, et al. Interfacial polymerization and its applications[J]. Chemical Industry and Engineering Progress, 2006, 25 (1) : 47-50. |
[9] | Yiamsawas D, Beckers S J, Lu H, et al. Morphology-controlled synthesis of lignin nanocarriers for drug delivery and carbon materials[J]. ACS Biomaterials Science & Engineering, 2017, 3 (10) : 2375-2383. |
[10] |
Nypelö T E, Carrillo C A, Rojas O J. Lignin supracolloids synthesized from (W/O) microemulsions: use in the interfacial stabilization of Pickering systems and organic carriers for silver metal[J]. Soft Matter, 2015, 11 (10) : 2046-2054.
doi: 10.1039/c4sm02851a pmid: 25629687 |
[11] | Chen N, Dempere L A, Tong Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (10) : 5204-5211. |
[12] |
Henn A, Mattinen M L. Chemo-enzymatically prepared lignin nanoparticles for value-added applications[J]. World Journal of Microbiology and Biotechnology, 2019, 35 (8) : 1-9.
doi: 10.1007/s11274-018-2566-9 |
[13] | Chen Kai, Qi Yungeng, Guo Yanzhu, et al. Progress on preparation and application of small-scale lignin particles[J]. Chemical Industry and Engineering Progress, 2020, 39 (8) : 3157-3173. |
[14] |
Juikar S J, Vigneshwaran N. Extraction of nanolignin from coconut fibers by controlled microbial hydrolysis[J]. Industrial Crops and Products, 2017, 109: 420-425.
doi: 10.1016/j.indcrop.2017.08.067 |
[15] | Rangan A, Manchiganti M V, Thilaividankan R M, et al. Novel method for the preparation of lignin-rich nanoparticles from lignocellulosic fibers[J]. Industrial Crops & Products, 2017, 103: 152-160. |
[16] |
Mishra P K, Wimmer R. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition[J]. Ultrasonics Sonochemistry, 2017, 35: 45-50.
doi: S1350-4177(16)30312-1 pmid: 27614582 |
[17] |
Myint A A, Lee H W, Seo B, et al. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent[J]. Green Chemistry, 2016, 18 (7) : 2129-2146.
doi: 10.1039/C5GC02398J |
[18] |
Qi L, Zhu M, Zu Y, et al. Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin[J]. Food Chemistry, 2012, 135 (1) : 63-67.
doi: 10.1016/j.foodchem.2012.04.070 |
[19] |
Tortora M, Cavalieri F, Mosesso P, et al. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules[J]. Biomacromolecules, 2014, 15 (5) : 1634-1643.
doi: 10.1021/bm500015j pmid: 24720505 |
[20] | Ago M, Huan S, Borghei M, et al. High-throughput synthesis of lignin particles (-30 nm to -2 μm) via aerosol flow reactor: size fractionation and utilization in pickering emulsions[J]. ACS Applied Materials & Interfaces, 2016, 8 (35) : 23302-23310. |
[21] |
Alqahtani M S, Alqahtani A, Al-Thabit A, et al. Novel lignin nanoparticles for oral drug delivery[J]. Journal of Materials Chemistry B, 2019, 7 (28) : 4461-4473.
doi: 10.1039/c9tb00594c |
[22] |
Lintinen K, Xiao Y, Ashok R B, et al. Closed cycle production of concentrated and dry redispersible colloidal lignin particles with a three solvent polarity exchange method[J]. Green Chemistry, 2018, 20 (4) : 843-850.
doi: 10.1039/C7GC03465B |
[23] |
Dai L, Li Y, Liu R, et al. Green mussel-inspired lignin magnetic nanoparticles with high adsorptive capacity and environmental friendliness for chromium (Ⅲ) removal[J]. International Journal of Biological Macromolecules, 2019, 132: 478-486.
doi: 10.1016/j.ijbiomac.2019.03.222 |
[24] | Rivière G N, Korpi A, Sipponen M H, et al. Agglomeration of viruses by cationic lignin particles for facilitated water purification[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (10) : 4167-4177. |
[25] |
Leskinen T, Witos J, Delgado J, et al. Adsorption of proteins on colloidal lignin particles for advanced biomaterials[J]. Biomacromolecules, 2017, 18 (9) : 2767-2776.
doi: 10.1021/acs.biomac.7b00676 pmid: 28724292 |
[26] |
Nishio M, Umezawa Y, Fantini J, et al. CH-π hydrogen bonds in biological macromolecules[J]. Physical Chemistry Chemical Physics, 2014, 16 (25) : 12648-12683.
doi: 10.1039/c4cp00099d pmid: 24836323 |
[27] |
Penna M J, Mijajlovic M, Biggs M J. Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface[J]. Journal of the American Chemical Society, 2014, 136 (14) : 5323-5331.
doi: 10.1021/ja411796e pmid: 24506166 |
[28] |
Zong E, Huang G, Liu X, et al. A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate[J]. Journal of Materials Chemistry A, 2018, 6 (21) : 9971-9983.
doi: 10.1039/C8TA01449C |
[29] |
Liu X, He X, Zhang J, et al. Cerium oxide nanoparticle functionalized lignin as a nano-biosorbent for efficient phosphate removal[J]. RSC Advances, 2020, 10 (3) : 1249-1260.
doi: 10.1039/c9ra09986g pmid: 35494677 |
[30] |
Sohni S, Hashima R, Nidaullah H, et al. Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions[J]. International journal of biological macromolecules, 2019, 132: 1304-1317.
doi: S0141-8130(19)30667-1 pmid: 30922916 |
[31] | Azimvand J, Didehban K, Mirshokraie S A. Preparation and characterization of nano-lignin biomaterial to remove basic red 2 dye from aqueous solutions[J]. Pollution, 2018, 4 (3) : 395-415. |
[32] |
Dong R J, Zheng D F, Yang D J, et al. pH-responsive lignin-based magnetic nanoparticles for recovery of cellulose[J]. Bioresource Technology, 2019, 294: 122133-122139.
doi: 10.1016/j.biortech.2019.122133 |
[33] | Chen Yihui, Liu Yan, Zhou Jianli, et al. Determination of peroxides in food samples by high performance liquid chromatography with variable wavelength detector[J]. Chinese Journal of Spectroscopy Laboratory, 2009, 26 (2) : 414-417. |
[34] |
Muralikrishna S, Cheunkar S, Lertanantawong B, et al. Graphene oxide-Cu(Ⅱ) composite electrode for non-enzymatic determination of hydrogen peroxide[J]. Journal of Electroanalytical Chemistry, 2016, 776: 59-65.
doi: 10.1016/j.jelechem.2016.06.034 |
[35] |
Sheng Y, Yang H, Wang Y, et al. Silver nanoclusters-catalyzed luminol chemiluminescence for hydrogen peroxide and uric acid detection[J]. Talanta, 2017, 166: 268-274.
doi: S0039-9140(17)30176-5 pmid: 28213233 |
[36] |
Nasir M, Nawaz M H, Latif U, et al. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays[J]. Microchimica Acta, 2017, 184 (2) : 323-342.
doi: 10.1007/s00604-016-2036-8 |
[37] |
Aadil K R, Barapatre A, Meena A S, et al. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles[J]. International Journal of Biological Macromolecules, 2016, 82: 39-47.
doi: 10.1016/j.ijbiomac.2015.09.072 pmid: 26434518 |
[38] |
Wang B, Gu S, Ding Y, et al. A novel route to prepare LaNiO3 perovskite-type oxide nanofibers by electrospinning for glucose and hydrogen peroxide sensing[J]. Analyst, 2013, 138 (1) : 362-367.
doi: 10.1039/C2AN35989H |
[39] |
Zhang Q, Li M, Guo C, et al. Fe3O4nanoparticles loaded on lignin nanoparticles applied as a peroxidase mimic for the sensitively colorimetric detection of H2O2[J]. Nanomaterials, 2019, 9 (2) : 210-224.
doi: 10.3390/nano9020210 |
[40] |
Jiang B, Duan D, Gao L, et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes[J]. Nature Protocols, 2018, 13 (7) : 1506-1520.
doi: 10.1038/s41596-018-0001-1 pmid: 29967547 |
[41] | Xue Y, Qiu X, Liu Z, et al. Facile and efficient synthesis of silver nanoparticles based on biorefinery wood lignin and its application as the optical sensor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (6) : 7695-7703. |
[42] |
Feldman D. Lignin nanocomposites[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2016, 53 (6) : 382-387.
doi: 10.1080/10601325.2016.1166006 |
[43] |
Grossman A, Wilfred V. Lignin-based polymers and nanomaterials[J]. Current Opinion in Biotechnology, 2019, 56: 112-120.
doi: S0958-1669(18)30061-2 pmid: 30458357 |
[44] | Du Lulu, Meng Weixiao, Xie Yanlin, et al. Research progress on PLA toughening[J]. New Chemical Materials, 2021, 49 (2) : 48-51. |
[45] | Yang W, Dominici F, Fortunati E, et al. Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate-g-poly(lactic acid) films before and after accelerated UV weathering[J]. Industrial Crops & Products, 2015, 77: 833-844. |
[46] |
Yang W, Fortunati E, Dominici F, et al. Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic(acid) bionanocomposites prepared by melt extrusion and solvent casting[J]. European Polymer Journal, 2015, 71: 126-139.
doi: 10.1016/j.eurpolymj.2015.07.051 |
[47] |
Li X, Hegyesi N, Zhang Y, et al. Poly(lactic acid)/lignin blends prepared with the pickering emulsion template method[J]. European Polymer Journal, 2019, 110: 378-384.
doi: 10.1016/j.eurpolymj.2018.12.001 |
[48] |
Gordobil O, Delucis R, Egüés I, et al. Kraft lignin as filler in PLA to improve ductility and thermal properties[J]. Industrial Crops and Products, 2015, 72: 46-53.
doi: 10.1016/j.indcrop.2015.01.055 |
[49] |
Anwer M, Naguib H, Celzard A, et al. Comparison of the thermal, dynamic mechanical and morphological properties of PLA-lignin & PLA-tannin particulate green composites[J]. Composites Part B, 2015, 82: 92-99.
doi: 10.1016/j.compositesb.2015.08.028 |
[50] |
Bertini F, Canetti M, Cacciamani A, et al. Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites[J]. Polymer Degradation and Stability, 2012, 97: 1979-1987.
doi: 10.1016/j.polymdegradstab.2012.03.009 |
[51] |
Liu D, Zhong T, Chang P R, et al. Starch composites reinforced by bamboo cellulosic crystals[J]. Bioresource Technology, 2010, 101 (7) : 2529-2536.
doi: 10.1016/j.biortech.2009.11.058 pmid: 20015636 |
[52] |
Lizundia E, Armentano I, Luzi F, et al. Synergic effect of nanolignin and metal oxide nanoparticles into poly(L-lactide) bionanocomposites: material properties, antioxidant activity and antibacterial performance[J]. ACS Applied Bio Materials, 2020, 3 (8) : 5263-5274.
doi: 10.1021/acsabm.0c00637 pmid: 35021701 |
[53] |
Nguyen K T, West J L. Photopolymerizable hydrogels for tissue engineering applications[J]. Biomaterials, 2002, 23 (22) : 4307-4314.
pmid: 12219820 |
[54] |
Chen Y, Zheng K, Niu L, et al. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles[J]. International Journal of Biological Macromolecules, 2019, 128: 414-420.
doi: S0141-8130(18)35437-0 pmid: 30682469 |
[55] |
Yang W, Fortunati E, Bertoglio F, et al. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles[J]. Carbohydrate Polymers, 2018, 181: 275-284.
doi: S0144-8617(17)31240-7 pmid: 29253973 |
[56] |
Hu X, Ye D, Tang J, et al. From waste to functional additives: thermal stabilization and toughening of PVA with lignin[J]. RSC Advances, 2016, 6 (17) : 13797-13802.
doi: 10.1039/C5RA26385A |
[57] |
Ye D, Jiang L, Hu X, et al. Lignosulfonate as reinforcement in polyvinyl alcohol film: mechanical properties and interaction analysis[J]. International journal of biological macromolecules, 2016, 83: 209-215.
doi: 10.1016/j.ijbiomac.2015.11.064 pmid: 26631636 |
[58] |
Bian H, Jiao L, Wang R, et al. Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel[J]. European Polymer Journal, 2018, 107: 267-274.
doi: 10.1016/j.eurpolymj.2018.08.028 |
[1] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[2] | 杲款款, 杨素珍, 韩婷婷, 李燕, 袁春颖, 毛欣宇. 王浆酸及其护肤功效的研究进展[J]. 日用化学工业(中英文), 2024, 54(2): 209-215. |
[3] | 孙锦月, 何聪芬. 网络药理学研究现状及在化妆品领域应用展望[J]. 日用化学工业(中英文), 2023, 53(9): 1087-1093. |
[4] | 熊洁, 杨丹, 孟宏, 何一凡, 裴晓静. 阿魏酸皮肤生理作用及其化妆品包载技术研究进展[J]. 日用化学工业(中英文), 2023, 53(9): 1073-1079. |
[5] | 王朱良,关舒萍,张敏,杨杰,李永继. 聚乙二醇和二乙二醇对溶剂热法合成Fe3O4纳米粒子的尺寸及形貌调控[J]. 日用化学工业(中英文), 2023, 53(8): 882-890. |
[6] | 张婉萍, 盖厚辰, 张冬梅, 蒋汶, 朱广用. 环糊精包埋技术研究进展及其在化妆品原料包埋中的应用[J]. 日用化学工业(中英文), 2023, 53(7): 808-815. |
[7] | 朱海荣, 孙胜敏, 张娟, 刘爽, 刘倩倩, 邹惠玲. 化妆品中防腐剂的应用现状及检测技术研究进展[J]. 日用化学工业(中英文), 2023, 53(6): 679-685. |
[8] | 孟宪瑶, 程一丹, 郭苗苗, 凌霄, 虞旦, 李丽. 西藏特色植物资源在化妆品中的研究与应用[J]. 日用化学工业(中英文), 2023, 53(6): 698-705. |
[9] | 亓国锋, 李刚刚, 安晏. 酶水解法制备黄芪素及应用研究[J]. 日用化学工业(中英文), 2023, 53(5): 544-550. |
[10] | 李曦, Saule Aidarova, 殷夏, Miras Issakhov, 徐德荣, 康万利. 荧光纳米材料的研究进展[J]. 日用化学工业(中英文), 2023, 53(5): 551-559. |
[11] | 王小康, 陈文, 张太军, 尹志刚, 古玉龙, 李涛. 植物甾醇(酯)的研究与应用前景[J]. 日用化学工业(中英文), 2023, 53(4): 445-452. |
[12] | 孙晓曼, 孟宪瑶, 周雯, 郭苗苗, 凌霄, 李丽. 云南特色植物资源在化妆品中的研究与应用[J]. 日用化学工业(中英文), 2023, 53(12): 1459-1465. |
[13] | 肖璐, 荣群, 白希, 莫洪波, 范维刚. 环境污染物布洛芬吸附材料的研究进展[J]. 日用化学工业(中英文), 2023, 53(12): 1437-1442. |
[14] | 张倩洁, 单子悦, 张冬梅, 蒋汶, 张婉萍. 刺激响应型聚合物乳化剂的研究进展[J]. 日用化学工业(中英文), 2023, 53(11): 1305-1314. |
[15] | 何小玲, 马艳, 邓星, 陆嘉莉, 吴荣荣, 龙梅. 异噻唑啉酮类防腐剂标准现状及检测技术研究进展[J]. 日用化学工业(中英文), 2023, 53(10): 1186-1193. |
|