日用化学工业 ›› 2022, Vol. 52 ›› Issue (8): 904-912.doi: 10.3969/j.issn.1001-1803.2022.08.016
• 专论与综述 • 上一篇
收稿日期:
2021-09-26
修回日期:
2022-07-28
出版日期:
2022-08-22
发布日期:
2022-08-24
通讯作者:
杨素珍
Wang Qian,Liu Fei,Yang Suzhen*(),Han Tingting,Wang Xiaomei,Chen Yurong
Received:
2021-09-26
Revised:
2022-07-28
Online:
2022-08-22
Published:
2022-08-24
Contact:
Suzhen Yang
摘要:
近年来,寻常痤疮、特应性皮炎等损容性皮肤病的发病率明显增加,其发病机理与皮脂腺功能异常密切相关。皮脂腺存在于真皮层,是皮肤的重要附属器官之一,其上存在着大量受体,受多种机制调控,其功能异常会造成多种皮肤问题。但目前国内对皮肤脂质的研究多针对于细胞间脂质,对皮脂腺分泌的脂质的作用机制研究还不够深入,临床应用与护肤品开发仍需大量基础研究支撑。文章从护肤角度对皮脂腺维持皮肤屏障功能、参与炎症反应、调控衰老进程以及调控肤色方面的作用机制进行了总结,并对皮脂腺相关皮肤问题、皮脂腺功能相关检测方法以及与皮脂腺调控相关的护肤品成分等进行了系统的概述,旨在为皮脂腺功能相关的皮肤护理和皮肤问题解决提供参考依据。
中图分类号:
王倩,刘菲,杨素珍,韩婷婷,王晓梅,陈玉荣. 皮脂腺在护肤领域的研究进展[J]. 日用化学工业, 2022, 52(8): 904-912.
Wang Qian,Liu Fei,Yang Suzhen,Han Tingting,Wang Xiaomei,Chen Yurong. Research progress of sebaceous glands in the field of skin care[J]. China Surfactant Detergent & Cosmetics, 2022, 52(8): 904-912.
表 1
皮肤脂质成分来源、组成、特点及主要作用[5⇓-7]"
皮肤脂质 | 质量分数 | 主要作用 | ||
---|---|---|---|---|
皮脂腺脂质 | 细胞间脂质 | |||
脂质组成 | 甘油三酯 | 41% | 16.5% | 形成表皮渗透压屏障; 防止紫外线辐射和晒伤 |
游离脂肪酸 | 16.4% | 10%~15% | 形成表皮渗透压屏障; 短链脂肪酸可抑制组蛋白脱乙酰基酶活性,抑制金黄色葡萄球菌的生长; 不饱和脂肪酸可激活过氧化物酶体增殖物激活受体γ,刺激脂质合成,促进终端皮脂腺细胞分化,抑制角质细胞增殖,抗衰老,抑制朗格汉斯细胞功能,减少黏附分子的表达; 花生四烯酸可代谢产生白三烯B4和前列腺素E2,参与炎症反应 | |
脂质组成 | 胆固醇 | 1.4% | 24% | 形成表皮渗透压屏障 |
胆固醇酯 | 2.1% | |||
角鲨烯 | 12% | 形成表皮渗透压屏障; 增强皮肤抗氧化性能 | ||
蜡酯 | 25% | 形成表皮渗透压屏障; 增强皮肤耐水性能及抗氧化性能 | ||
神经酰胺 | 40%~50% | 形成表皮渗透压屏障; 抑制肿瘤坏死因子-α和Toll样受体4诱导的核转录因子Kappa B激活,刺激细胞增殖和迁移,抑制细胞凋亡 |
表 3
护肤品常用调控皮脂分泌的成分及其作用机理"
成分 | 作用途径 | 参考文献 |
---|---|---|
清洁类成分 | 清除已产生的皮脂,但过度清洗可能会造成毛囊口压力减小,刺激皮脂腺更快地分泌更多皮脂,直至压力达到平衡 | [ |
硅石 | 通过自身的孔隙,暂时吸附皮肤表面的油脂 | [ |
改性玉米淀粉 | ||
滑石粉 | ||
高岭土 | ||
PCA锌 | 通过收缩毛孔减少皮脂的排出达到减少皮肤表面油脂的目的 | [ |
药用层孔菌提取物 | ||
北美金缕梅提取物 | ||
白藜芦醇 | 可导致G0/G1期皮脂腺细胞比例增加,抑制皮脂腺细胞生长成熟,减少皮脂的产生 | [ |
肉毒杆菌毒素 | 乙酰胆碱的表达量与皮脂的分泌量呈正相关,肉毒杆菌毒素可竞争乙酰胆碱受体,减少乙酰胆碱与皮脂腺上乙酰胆碱受体的结合 | [ |
土茯苓提取物 | 通过调节5α-还原酶的活性动态调节皮脂的分泌 | [ |
维生素A及其衍生物 | 通过调节上皮细胞生长、分化和角化过程,减少因皮脂成分改变而导致的痤疮形成 | [ |
[1] |
Smith K R, Thiboutot D M. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe?[J]. Journal of Lipid Research, 2008, 49 (2) : 271-281.
doi: 10.1194/jlr.R700015-JLR200 pmid: 17975220 |
[2] |
Fischer H, Fumicz J, Rossiter H, et al. Holocrine secretion of sebum is a unique DNase2-dependent mode of programmed cell death[J]. Journal of Investigative Dermatology, 2017, 137 (3) : 587-594.
doi: S0022-202X(16)32534-9 pmid: 27771328 |
[3] |
Schneider M R, Paus R. Sebocytes, multifaceted epithelial cells: Lipid production and holocrine secretion[J]. Int J Biochem Cell Biol, 2010, 42 (2) : 181-185.
doi: 10.1016/j.biocel.2009.11.017 pmid: 19944183 |
[4] | Tao Ke. Isolation, cultivation of human fetal sebocytes and sweat eccrine gland cells in vitro, and the preliminary study on differentiation from human fetal epidermal stem cells to hair follicle, sebaceous gland and eccdne sweat gland[D]. Xi’an: Air Force Medical University, 2005. |
[5] | Wang Qi, Liu Xianghui, Jia Xiaofan, et al. Progress in research work with respect to analysis method for composition of skin lipids[J]. China Surfactant Detergent & Cosmetics, 2014 (4) : 55-59. |
[6] |
Jia Y, Gan Y, He C, et al. The mechanism of skin lipids influencing skin status[J]. Journal of Dermatological Science, 2018, 89 (2) : 112-119.
doi: 10.1016/j.jdermsci.2017.11.006 |
[7] | Sakuma T H, Maibach H I. Oily skin: an overview[J]. Skin Pharmacology & Physiology, 2012, 25 (5) : 227-235. |
[8] | He Li. Skin barrier and related skin diseases[J]. Chinese Journal of Dermatology, 2012, 45 (6) : 455-457. |
[9] |
Lu Benrong, Liu Yi, Li Shilong, et al. Structure,function and reconstruction of skin surface lipid film[J]. Chinese Journal of Burns, 2016, 32 (2) : 126-128.
doi: 10.3760/cma.j.issn.1009-2587.2016.02.015 pmid: 26902280 |
[10] |
Ehrhardt P. pH in nature, humans and skin[J]. The Journal of Dermatology, 2018, 45 (9) : 1044-1052.
doi: 10.1111/1346-8138.14489 pmid: 29863755 |
[11] |
Yang Manli, Zhou Mingyue, Jia Yan, et al. A review of fatty acids influencing skin condition[J]. Journal of Cosmetic Dermatology, 2020, 19 (12) : 3199-3204.
doi: 10.1111/jocd.13616 |
[12] |
Picardo M, Mastrofrancesco A, Bíró T. Sebaceous gland: a major player in skin homoeostasis[J]. Experimental Dermatology, 2015, 24 (7) : 485-486.
doi: 10.1111/exd.12720 pmid: 25865503 |
[13] | Mattii M, Lovászi M, Garzorz-Stark N, et al. Sebocytes contribute to skin inflammation by promoting the differentiation of Th17 cells[J]. British Journal of Dermatology, 2016, 136 (3) : S234. |
[14] |
Szanto, Magdolna, Olah, et al. Activation of TRPV3 inhibits lipogenesis and stimulates production of inflammatory mediators in human sebocytes-a putative contributor to dry skin dermatoses[J]. The Journal of Investigative Dermatology, 2019, 139 (1) : 250-253.
doi: 10.1016/j.jid.2018.07.015 |
[15] |
Alestas T, Ganceviciene R, Fimmel S, et al. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands[J]. Journal of Molecular Medicine, 2006, 84 (1) : 75.
doi: 10.1007/s00109-005-0715-8 |
[16] |
Xiao-Xiao H, Guangjie C, Amir M H, et al. Aryl hydrocarbon receptor modulates the expression of TNF-α and IL-8 in human sebocytes via the MyD88-p65NF-κB/p38MAPK signaling pathways[J]. Journal of Innate Immunity, 2018, 11: 1-11.
doi: 10.1159/000495685 |
[17] |
Choi K O, Jin M, Zouboulis C, et al. Increased lipid accumulation under hypoxia in SZ95 human sebocytes[J]. Dermatology, 2020, 237 (1) : 1-11.
doi: 10.1159/000512932 |
[18] | M Lovászi, Mattii M, Eyerich K, et al. Sebum lipids influence macrophage polarization and activation[J]. British Journal of Dermatology, 2017, 117 (6) : 1671-1682. |
[19] |
Richard W Clayton, Ewan A Langan, David M Ansell, et al. Neuroendocrinology and neurobiology of sebaceous glands[J]. Biological Reviews, 2020, 95 (3) : 592-624.
doi: 10.1111/brv.12579 |
[20] | Jin Xingji, Cheng Shan, Chen Zhou, et al. Effects of triglycerides metablism on HaCaT cells after ultraviolet radiation and its possible mechanism[J]. Progress in Modern Biomedicine, 2014, 14 (33) : 6454-6459. |
[21] | Lei Xixi, Zhao Songlin, Chen Weijun, et al. Comparative study on anti: aging effect of squalene and vitamin E to skin[J]. Science and Technology of Food Industry, 2013 (13) : 91-93. |
[22] | Ju Qiang, Xia Longqing. The secretion activity of sebaceous glands is a main physiological way to transport vitamin E to the skin[J]. Foreign Medical Sciences (Section of Dermatology and Venereology), 2000 (6) : 378. |
[23] | Kazutoshi, Kumagai, Saaya, et al. The structure of human sebaceous glands and its relation to skin viscoelasticity[G]// Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. USA: IEEE Engineering in Medicine and Biology Society, 2018: 3460-3463. |
[24] |
Makrantonaki E, Adjaye J, Herwig R, et al. Age-specific hormonal decline is accompanied by transcriptional changes in human sebocytes in vitro[J]. Aging Cell, 2006, 5 (4) : 331-344.
pmid: 16805856 |
[25] | Kim J, Nakasaki M, Todorova D, et al. p53 Induces skin aging by depleting Blimp1+ sebaceous gland cells[J]. Cell Death & Disease, 2014, 5 (3) : e1141. |
[26] |
Elewa R M, Abdallah M, Youssef N, et al. Aging-related changes in cutaneous corticotropin-releasing hormone system reflect a defective neuroendocrine-stress response in aging[J]. Rejuvenation Research, 2012, 15 (4) : 366-373.
doi: 10.1089/rej.2011.1294 |
[27] |
Abdel-Naser M B, Seltmann H, Zouboulis C C. SZ95 sebocytes induce epidermal melanocyte dendricity and proliferation in vitro[J]. Experimental Dermatology, 2012, 21 (5) : 393-395.
doi: 10.1111/j.1600-0625.2012.01468.x pmid: 22509839 |
[28] | Chen Mo, Zhao Ya. Regulation of oily skin and sebum secretion[J]. Daily Chemical Science, 2013, 36 (11) : 32-34. |
[29] | Hu Jianwu. Research progress of acne formation[J]. Medical Information (First Issue), 2011 (3) : 1678-1679. |
[30] |
Smith R N, Braue A, Varigos G A, et al. The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides[J]. Journal of Dermatological Science, 2008, 50 (1) : 41-52.
doi: 10.1016/j.jdermsci.2007.11.005 |
[31] | Jin Peiying. Classification and treatment of acne[J]. Chinese Journal of Dermatology, 2002 (1) : 66-68. |
[32] | Cui Le, Jia Yan, Cheng Zhiwei, et al. Advancement in maintaining skin barrier: secretion and composition of lipid[J]. Chinese Journal of Dermatovenereology, 2016 (6) : 640-643. |
[33] | Li Yaqin, Cheng Lixue, Ji Chao, et al. The function of the sebaceous glands in inflammatory skin disease[J]. Chinese Journal of Aesthetic Medicine, 2016, 25 (11) : 116-118. |
[34] |
Shin J, Kim K P, Ahn H Y, et al. Alterations in IL-4, IL-10 and IFN-γ levels synergistically decrease lipid content and protein expression of FAS and mature SREBP-1 in human sebocytes[J]. Archives of Dermatological Research, 2019, 311 (7) : 563-571.
doi: 10.1007/s00403-019-01932-x |
[35] | Shang Weihua, Wang Xiuli. Study on pathogenesis of senile pruritus[J]. Geriatrics Reserach, 2020, 1 (1) : 61-64. |
[36] |
Anne‐France de Bengy, Forraz N, Danoux L, et al. Development of new 3D human ex vivo models to study sebaceous gland lipid metabolism and modulations[J]. Cell Proliferation, 2019, 52 (1) : e12524.
doi: 10.1111/cpr.12524 |
[37] |
Han Xianlin. Lipidomics for studying metabolism[J]. Nature Reviews Endocrinology, 2016, 12 (11) : 668-679.
doi: 10.1038/nrendo.2016.98 pmid: 27469345 |
[38] | Wang Tao, Mei Xurong, Zhong Xiuli, et al. Lipidomics research method and its application[J]. Bulletin of Botany, 2010, 45 (2) : 249-257. |
[39] | He Li. Beauty dermatology[M]. Beijing: People’s Medical Publishing House, 2011: 23-25. |
[40] | Wu Yan. Oil skin and control of the sebaceous glands[J]. Journal of Clinical Dermatology, 2004 (12) : 769-771. |
[41] |
Kim S Y, Hyun M Y, Go K C, et al. Resveratrol exerts growth inhibitory effects on human SZ95 sebocytes through the inactivation of the PI3-K/Akt pathway[J]. International Journal of Molecular Medicine, 2015, 35 (4) : 1042-1050.
doi: 10.3892/ijmm.2015.2098 |
[42] |
A Z J L, A S B P, A K C S, et al. Regulation of lipid production by acetylcholine signalling in human sebaceous glands[J]. Journal of Dermatological Science, 2013, 72 (2) : 116-122.
doi: 10.1016/j.jdermsci.2013.06.009 |
[43] | Hu Guosheng. Abnormality of sebum and new progress in its prevention and treatment[J]. China Cosmetics Review, 2003 (4) : 77-80. |
[1] | 胡翠翠, 周代红, 陈欣菀, 钟佳伶, 茆灿泉. 中药复方MHC-20的抗化脓性链球菌功效与作用机制探究[J]. 日用化学工业(中英文), 2024, 54(3): 282-289. |
[2] | 张红菱, 程琳, 王海燕, 罗飞亚, 张会亮, 孙磊. 应用DPRA替代方法评价3种香豆素类化合物的皮肤致敏性[J]. 日用化学工业(中英文), 2024, 54(2): 156-160. |
[3] | 杲款款, 杨素珍, 韩婷婷, 李燕, 袁春颖, 毛欣宇. 王浆酸及其护肤功效的研究进展[J]. 日用化学工业(中英文), 2024, 54(2): 209-215. |
[4] | 王亚茹, 莫庭源, 赖红霞, 周悦, 谢嘉颖, 谭建华. 基于斑贴及稳定性试验剖析含烟酰胺化妆品皮肤刺激性成因[J]. 日用化学工业(中英文), 2024, 54(1): 51-56. |
[5] | 王安娜, 方梦婕, 唐超, 岳天翔. 丹参素对UVB诱导的皮肤光老化小鼠的保护作用和抗氧化机制研究[J]. 日用化学工业(中英文), 2024, 54(1): 65-72. |
[6] | 万宗元, 佟薇, 周淳, 胡坪, 欧阳胜, 章弘扬. 基于脂质组学的敏感性皮肤表面脂质差异分析[J]. 日用化学工业(中英文), 2023, 53(9): 999-1007. |
[7] | 沈轶昕, 唐礼荣, 张辉. 茶多酚的经皮渗透特征及其对UVA致HSF氧化损伤的保护作用[J]. 日用化学工业(中英文), 2023, 53(9): 1035-1043. |
[8] | 黄芳, 张营, 熊玥, 周利丹, 卢伊娜. 望春花(M. biondi)花提取物缓解UVB导致皮肤损伤的作用研究[J]. 日用化学工业(中英文), 2023, 53(9): 1065-1072. |
[9] | 熊洁, 杨丹, 孟宏, 何一凡, 裴晓静. 阿魏酸皮肤生理作用及其化妆品包载技术研究进展[J]. 日用化学工业(中英文), 2023, 53(9): 1073-1079. |
[10] | 顾薇薇. 视觉效应下日用护肤品包装元素优化设计方法[J]. 日用化学工业(中英文), 2023, 53(9): 1094-1100. |
[11] | 周利丹, 卢伊娜, 杨继峰, 施雪梅, 熊玥, 张磊. 植物复合舒缓剂(CAP)对外源性皮肤刺激的保护作用[J]. 日用化学工业(中英文), 2023, 53(7): 757-764. |
[12] | 冯法晴, 李静. 化妆品舒缓功效的科学评价方法[J]. 日用化学工业(中英文), 2023, 53(7): 816-825. |
[13] | 万凯波, 马玲, 陈殿松, 常宽, 王靖. 头发与头皮护理的科学基础(Ⅵ)——头皮油脂的特点及调控手段[J]. 日用化学工业(中英文), 2023, 53(6): 634-641. |
[14] | 刘丽, 尹雅婷, 程康, 李惠, 吕智, 易帆. 基于in silico技术探究益母草在化妆品中的应用前景[J]. 日用化学工业(中英文), 2023, 53(6): 686-697. |
[15] | 马来记, 张欢, 陈慧丹, 杨素珍, 李燕, 邵丽. 上海地区310名女性皮肤生理参数和皮肤菌群随年龄的变化特征[J]. 日用化学工业(中英文), 2023, 53(4): 414-422. |
|