日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (6): 634-641.doi: 10.3969/j.issn.2097-2806.2023.06.004
收稿日期:
2023-05-25
出版日期:
2023-06-22
发布日期:
2023-06-25
基金资助:
Wan Kaibo1,Ma Ling2,Chen Timson2,Chang Kuan1,*(),Wang Jing1,*(
)
Received:
2023-05-25
Online:
2023-06-22
Published:
2023-06-25
Contact:
*Tel.: +86-18810876236, E-mail: 摘要:
头皮健康日益成为消费者选择发用产品时的关注重点,而头皮油脂是影响头皮健康的关键因素之一。皮脂本身是头皮屏障的重要组分部分,起着保护皮肤、保存水分、维持皮肤稳态等作用,由皮脂腺分泌。皮脂腺位于真皮层,通过全浆分泌产生皮脂,皮脂腺上存在着大量受体,受多种机制调控,其功能的异常会导致多种皮脂腺疾病,引发一系列的头皮健康问题。本文概述了皮脂和皮脂腺的功能及特点,介绍了当前几种皮脂调控理论,并对皮脂分泌的实验评价方法进行概述,总结了市面上控油产品原料及其机理,旨在为皮脂腺相关功能的皮肤护理问题和控油产品的开发解决提供参考依据。
中图分类号:
万凯波, 马玲, 陈殿松, 常宽, 王靖. 头发与头皮护理的科学基础(Ⅵ)——头皮油脂的特点及调控手段[J]. 日用化学工业(中英文), 2023, 53(6): 634-641.
Wan Kaibo, Ma Ling, Chen Timson, Chang Kuan, Wang Jing. Scientific foundations of hair and scalp care (Ⅵ)Characteristics and regulation of scalp sebum[J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 634-641.
表1
日用产品中常见的控油原料及机理"
控油原料 | 控油原理 | 参考文献 | |
---|---|---|---|
清洁吸附类 | 深海泥、硅藻土、表面活性剂 | 清除已产生的皮脂 | [ |
抑制微生物类 | ZPT、二硫化硒 | 抑制痤疮丙酸杆菌、马拉色菌的定殖 | [ |
锌剂 | 酵母菌/锌发酵产物、PCA锌、透明质酸锌 | 锌可能具有抗雄激素活性,抑制皮脂过度产生 | [ |
植物提取类 | 黄酮、皂苷、多酚 | 拮抗雄激素、抑制5-α还原酶、作用于相应的受体和通路 | [ |
维生素类 | VB3及其衍生物、Vc | 紧致肌肤、缩小毛孔的、抑制以葡萄糖底物合成脂质的反应 | [ |
酸类 | 维A酸及其衍生物、壬二酸、水杨酸 | 作用于相应的受体、对角质的形成增生起到抑制作用、限制皮脂腺的分化 | [ |
[1] | Shamloul G, Khachemoune A. An updated review of the sebaceous gland and its role in health and diseases rart 1: embryology, evolution, etructure, and eunction of sebaceous glands[J]. Dermatologic Therapy, 2021, 34 (1) : 14695. |
[2] | Li Yuhan, Liu Tingzhu, Wang Juan. Analysis on the development status and efficacy evaluation methods of scalp care products[J]. China Cosmetics, 2021 (9) : 83-87. |
[3] |
Zouboulis C C, Schagen S, Alestas T. The sebocyte culture: a model to study the pathophysiology of the sebaceous gland in sebostasis, seborrhea and acne[J]. Archives for Dermatological Research, 2008, 300 (8) : 397-413.
doi: 10.1007/s00403-008-0879-5 |
[4] | He Li. Skin barrier and related skin diseases[J]. Chinese Journal of Dermatology, 2012, 45 (6) : 455-457. |
[5] |
Lu Benrong, Liu Yi, Li Shilong, et al. Structure, function and reconstruction of skin surface lipid film[J]. Chinese Journal of Burns, 2016, 32 (2) : 126-128.
doi: 10.3760/cma.j.issn.1009-2587.2016.02.015 pmid: 26902280 |
[6] | Mattii M, Lovaszi M, Garzorz-Stark N, et al. Sebocytes contribute to skin inflammation by promoting the differentiation of Th17 cells[J]. British Journal of Dermatology, 2016, 136 (3) : 234. |
[7] |
Smith K R, Thiboutot D M. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe?[J]. Journal of Lipid Research, 2008, 49 (2) : 271-281.
doi: 10.1194/jlr.R700015-JLR200 pmid: 17975220 |
[8] | James W D, Berger T G, Elston D M. Andrews diseases of theskin: clinical dermatology[M]. 10 th Edition. Canada: Elsevier Inc, 2006. |
[9] |
Kure K, Isago T, Hirayama T. Changes in the sebaceous gland in patients with male pattern hair loss (androgenic alopecia)[J]. Journal of Cosmetic Dermatology, 2015, 14 (3) : 178-184.
doi: 10.1111/jocd.12153 pmid: 26147300 |
[10] |
Pappas, Apostolos. Epidermal surface lipids[J]. Dermato-Endocrinology, 2009, 1 (2) : 72-76.
doi: 10.4161/derm.1.2.7811 pmid: 20224687 |
[11] | Szollosi A G, Oláh A, Bíró T, et al. Recent advances in the endocrinology of the sebaceous gland[J]. Dermato-Endocrinology, 2008, 9 (1). |
[12] |
Choudhry R, Hodgins M B, Vanderkwast T H, et al. Localization of androgen receptors in human skin by immunohistochemistry: implications for the hormonal regulation of hair growth, sebaceous glands and sweat glands[J]. Journal of Endocrinology, 1992, 133 (3) : 467.
doi: 10.1677/joe.0.1330467 |
[13] |
Bernard C, Garnier J, Pedretti N, et al. Androgens induce sebaceous differentiation in sebocyte cells expressing a stable functional androgen receptor[J]. Journal of Steroid Biochemistry and Molecular Biology, 2015, 152: 34-44.
doi: 10.1016/j.jsbmb.2015.04.005 pmid: 25864624 |
[14] |
Rosignoli C, Nicolas J C, Jomard A, et al. Involvement of the SREBP pathway in the mode of action of androgens in sebaceous glands in vivo[J]. Experimental Dermatology, 2003, 12 (4) : 480-489.
pmid: 12930306 |
[15] | Schoonjans K, Staels B, Auwerx J, et al. The peroxisome proliferator-activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation[J]. Biochim Biophys Acta, 1996, 13 (2) : 93-109. |
[16] | Braissant O, Foufelle F, Scotto S, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat[J]. Endocrinology, 1996, 137: 345. |
[17] | Semple R K, Chatterjee V, S O'Rahilly, et al. PPARγ and human metabolic disease[J]. Journal of Clinical Investigation, 2006, 3: 116. |
[18] |
Rosenfield R L, Kentsis D, Deplewski N, et al. Rat preputial sebocyte differentiation involves peroxisome proliferator-activated receptors[J]. Journal of Investigative Dermatology, 1999, 112 (2) : 226-232.
pmid: 9989800 |
[19] | Rosenfield R L, Deplewski D, Kentsis A, et al. Mechanisms of androgen induction of sebocyte differentiation[J]. Journal of Investigatice Dermatology, 1998, 196 (1) : 43-46. |
[20] | Chen Mo, Zhao Ya. Regulation of oily skin and sebum secretion[J]. Daily Chemica, 2013, 36 (11) : 32-34. |
[21] | Trivedi N R, Cong Z Y, Nelson A M, et al. Peroxisome proliferator-activated receptors increase human sebum production[J]. Journal of Investigatice Dermatology, 2006, 126: 2002-2009. |
[22] | Shi Linna, Wang Ke, Deng Yudi, et al. Regulation of lipid metabolism and its molecular mechanism[J]. Journal of Southern Medical University, 2019, 39 (7) : 8. |
[23] | Yang Z, Klionsky D J. Mammalian autophagy: core molecular machinery and signaling regulation[J]. Curent Opinion in Cell Biology, 2010, 22 (2) : 124-131. |
[24] |
Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin[J]. Nature Reviews Molecular Cell Biology, 2017, 18 (11) : 671-684.
doi: 10.1038/nrm.2017.76 pmid: 28852221 |
[25] |
Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism[J]. Nature, 2009, 458 (7242) : 1131-1164.
doi: 10.1038/nature07976 |
[26] |
Seo S, Jung J, Park K, et al. Autophagy regulates lipid production and contributes to the sebosuppressive effect of retinoic acid in human SZ95 sebocytes[J]. Journal of Investigative Dermatology, 2020, 98 (2) : 128-136.
doi: 10.1111/1523-1747.ep12555633 |
[27] | Matias J R, Orentreich N. The hamster ear sebaceous glands. I. Examination of the regional variation by stripped skin planimetry[J]. The Journal of Investigative Dermatology, 1983, 8 (1) : 43-46. |
[28] |
Geiger J. Retinoids and sebaceous gland activity[J]. Dermatology, 1995, 191: 305-310.
pmid: 8573927 |
[29] |
Thiboutot D, Jabara S, McAllister J, et al. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1)[J]. The Journal of Investigative Dermatology, 2003, 120: 905-914.
doi: 10.1046/j.1523-1747.2003.12244.x |
[30] |
Zouboulis C C. Acne and sebaceous gland function[J]. Clinics in Dermatology, 2004, 22 (5) : 360-366.
doi: 10.1016/j.clindermatol.2004.03.004 |
[31] |
Chen W, Kelly M A, Opitz-Araya X, et al. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides[J]. Cell, 1997, 91 (6) : 789-798.
pmid: 9413988 |
[32] | Wang Qian, Liu Fei, Yang Suzhen, et al. Research progress of sebaceous glands in skin care[J]. China Surfactant Detergent & Cosmetics, 2022, 52 (8) : 904-912. |
[33] | Wang Tao, Mei Xurong, Zhong Xiuli, et al. Lipidomics research method and its application[J]. Bulletin of Botany, 2010, 45 (2) : 249-257. |
[34] | Yang Manli. Characteristic component analysis and molecular classification of AGA based on lipidomics[D]. Beijing: Beijing Technology and Business University, 2021. |
[35] | Mahmood T, Akhtar N, Moldovan C. A comparison of the effects of topical green tea and lotus on facial sebum control in healthy subjects[J]. Hippokratis, 2013, 17 (1) : 64-67. |
[36] |
Mahmood T, Akhtar N, Khan B A, et al. Outcomes of 3% green tea emulsion on skin sebum production in male volunteers[J]. Bosnian Journal of Basic Medical Sciences, 2010, 10 (3) : 260-264.
doi: 10.17305/bjbms.2010.2697 |
[37] | Seki T, Morohashi M. Effect of some alkaloids, flavonoids and triterpenoids, contents of Japanese-Chinese traditional herbal medicines, on the lipogenesis of sebaceous glands[J]. Skin Pharmacol, 1993, 6 (1) : 56-60. |
[38] |
Sato T, Takashi A, Kojima M, et al. A citrus polymethoxy flavonoid, nobiletin inhibits sebum production and sebocyte proliferation, and augments sebum excretion in hamsters[J]. Journal of Investigative Dermatology, 2007, 127 (12) : 2740-2748.
pmid: 17597820 |
[39] |
Yang J W, Kim S. Ginsenoside Rc promotes anti-adipogenic activity on 3T3-L1 adipocytes by down-regulating C/EBPα and PPARγ[J]. Molecules, 2015, 20 (1) : 1293-1303.
doi: 10.3390/molecules20011293 |
[40] |
Siraj, Fayeza, Md, et al. Ginsenoside F2 possesses anti-obesity activity via binding with PPAR gamma and inhibiting adipocyte differentiation in the 3T3-L1 cell line[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30 (1) : 9-14.
doi: 10.3109/14756366.2013.871006 pmid: 24666293 |
[41] |
Gao Y, Yang M F, Su Y P, et al. Ginsenoside Re reduces insulin resistance through activation of PPAR-γ pathway and inhibition of TNF-α production[J]. Journal of Ethnopharmacology, 2013, 147 (2) : 509-516.
doi: 10.1016/j.jep.2013.03.057 pmid: 23545455 |
[42] |
Shang W, Yang Y, Jiang B, et al. Ginsenoside Rb1 promotes adipogenesis in 3T3-L1 cells by enhancing PPARgamma2 and C/EBP alpha gene expression[J]. Life Sciences, 2007, 80 (7) : 618-625.
doi: 10.1016/j.lfs.2006.10.021 |
[43] | Shen Huchi, Yang Li, Chen Diansong, et al. Study on decolorization and oil control effect of tea saponin[J]. China Surfactant Detergent &Cosmetics, 2022, 52 (5) : 486-492. |
[44] | He Li. Beauty dermatology[M]. Beijing: People's Medical Publishing House, 2011: 23-25. |
[45] | Hu Qing, Yu Hong, Zhong Jiqiang, et al. Research progress of pyrithione zinc as anti-dandruff agent[J]. Detergent & Cosmetics, 2012, 35 (6) : 29-32. |
[46] | Yang Guang. Clinical effect of 1% pimelimus combined with 2.5% selenium disulfide lotion on seborrheic dermatitis of the head[J]. Chinese Contemporary Medicine, 2015, 22 (22) : 115-117. |
[47] |
Stamatiadis D, Bulteau-Portois M C, Mowszowicz I, et al. Inhibition of 5 alpha-reductase activity in human skin by zinc and azelaic acid[J]. British Journal of Dermatology, 1988, 119 (5) : 627-632.
pmid: 3207614 |
[48] | Gupta M, Mahajan V K, Mehta K S, et al. Zinc therapy in dermatology: A review[J]. Dermatology Research and Practice, 2014, 2014: 709152. |
[49] |
Draelos Z D, Matsubara A, Smiles K. The effect of 2% niacinamideon facial sebum production[J]. Journal of Cosmetic and Laser Therapy, 2006, 8 (2) : 96-101.
pmid: 16766489 |
[50] | Tsukada M, Schroder M, Roos T C, et al. 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and brinding to retinoid acid receptors[J]. Journal of Investigative Dermatology, 2000, 115 (3) : 542. |
[51] |
Fisher G J, Talwar H S, Xiao J H, et al. Immunological identification and functional quantification of retinoicacid and retinoid X receptor proteins in human skin[J]. Journal of Biological Chemistry, 1994, 269 (32) : 20629-20635.
pmid: 8051161 |
[52] |
Duell E A, Astrom A, Griffiths C E, et al. Human skin levels of retinoic acid and cytochrome P-450-derived 4-hydroxyretinoic acidafter topical applicationofretinoic acid in vivo compared to concentrations requiredto stimulate RAR-mediated transcription in vitro[J]. Journal of Clinical Investigation, 1992, 90 (4) : 1269-1274.
pmid: 1328295 |
[53] |
Baron J M, Heise R, Blaner W, et al. Retinoic acid and its 4-oxo metabolites are functionally active in human skin cells in vitro[J]. Journal of Investigative Dermatology, 2005, 125 (1) : 143-153.
pmid: 15982314 |
[1] | 李思玥, 韩蕊, 刘琦, 李岳秦, 赵华. 化妆品控油功效评价方法研究进展[J]. 日用化学工业(中英文), 2023, 53(5): 560-566. |
[2] | 郭海姣, 王晓娜, 杨素珍, 袁春颖, 任轩, 韩婷婷. 透明质酸锌的护肤功效研究[J]. 日用化学工业(中英文), 2023, 53(12): 1429-1436. |
[3] | 王倩,刘菲,杨素珍,韩婷婷,王晓梅,陈玉荣. 皮脂腺在护肤领域的研究进展[J]. 日用化学工业, 2022, 52(8): 904-912. |
[4] | 杨洁,姚晨之,严方,王杰,李晓婷. 织物洗涤剂除菌性能的测试评价方法[J]. 日用化学工业, 2022, 52(6): 672-676. |
[5] | 何益飞,鲁旺旺,马诗经,刘冠廷,王梦萍,杜志云. 甘草次酸对金黄地鼠皮脂腺斑影响的实验研究[J]. 日用化学工业, 2022, 52(6): 620-625. |
[6] | 汪子涵,许虎君. PEG脂肪酸甘油酯的脱脂、赋脂性能研究[J]. 日用化学工业, 2021, 51(4): 294-298. |
[7] | 王杰,姚晨之. 织物洗涤剂柔软性能测试方法的研究[J]. 日用化学工业, 2021, 51(3): 190-194. |
[8] | 何广文,颜少慰,曾一帆,闫加雷,钱景茹,王靖. 皂基/氨基酸复配型洁面产品的性能研究[J]. 日用化学工业, 2021, 51(12): 1228-1234. |
[9] | 杨曼丽,周明月,胡雪情,陈风,何聪芬,贾焱. 化妆品经皮渗透研究进展——评价方法及促渗技术[J]. 日用化学工业, 2020, 50(11): 793-798. |
[10] | 宋艳青,盘瑶,赵华. 化妆品透皮吸收试验方法概述[J]. 日用化学工业, 2019, 49(12): 824-829. |
[11] | 曹月, 瞿昊. 头发光损伤评价方法[J]. 日用化学工业, 2017, 47(5): 286-291. |
[12] | 蔡睿, 何文丹, 唐颖, 盘瑶, 赵华. 化妆品光刺激性和光致敏性的安全评价方法进展[J]. 日用化学工业, 2017, 47(10): 588-592. |
[13] | 姚远,罗健辉,范洪富,王平美,高圣平,王贝贝,康涛. 质构分析应用于预交联体膨颗粒强度评价的研究[J]. 日用化学工业, 2016, 46(7): 404-408. |
|