日用化学工业 ›› 2021, Vol. 51 ›› Issue (12): 1171-1178.doi: 10.3969/j.issn.1001-1803.2021.12.002
修回日期:
2021-11-28
出版日期:
2021-12-22
发布日期:
2021-12-21
通讯作者:
李云兴
基金资助:
Chen Fengfeng,Gong Suijing,Chen Wenjing,Sun Yajuan,Yang Cheng,Li Yunxing()
Revised:
2021-11-28
Online:
2021-12-22
Published:
2021-12-21
Contact:
Yunxing Li
摘要:
液体弹珠是一种由疏液固体颗粒在液滴表面形成吸附层而兼具液体和固体性质的特殊软物质。虽然结构简单,但是这种新型软物质呈现出众多独特的物理化学性质,使其在许多不同的领域都展现出良好的应用前景,特别是在化妆品领域,应该是最有前景和最具可行性的。然而,液体弹珠在目前的使用过程中仍然存在一些缺点,例如,内部液滴挥发速度快和外壳机械强度不可控。本文首先回顾液体弹珠的制备方法、形成原理和使用材料,进而论述液体弹珠的物理化学性质,主要针对液体弹珠内部液滴的挥发速度和外壳的机械强度,最后概述液体弹珠在化妆品领域的应用现状和存在的挑战。
中图分类号:
陈凤凤,龚穗菁,陈文静,孙亚娟,杨成,李云兴. 化妆品乳液及乳化新技术(Ⅵ)——液体弹珠与化妆品[J]. 日用化学工业, 2021, 51(12): 1171-1178.
Chen Fengfeng,Gong Suijing,Chen Wenjing,Sun Yajuan,Yang Cheng,Li Yunxing. Cosmetic emulsions and new technologies of emulsification (Ⅵ) Liquid marbles and cosmetics[J]. China Surfactant Detergent & Cosmetics, 2021, 51(12): 1171-1178.
[1] |
Leal-Calderon F, Schmitt V. Solid-stabilized emulsions[J]. Current Opinion in Colloid & Interface Science, 2008, 13(4) : 217-227.
doi: 10.1016/j.cocis.2007.09.005 |
[2] |
Aussillous P, Quéré D. Liquid marbles[J]. Nature, 2001, 411(6840) : 924-927.
doi: 10.1038/35082026 |
[3] |
McHale G, Newton M I. Liquid marbles: principles and applications[J]. Soft Matter, 2011, 7(12) : 5473-5481.
doi: 10.1039/c1sm05066d |
[4] | Allan, Barry D. Dry Water: US4008170[P]. 1977. |
[5] | Dieter S, Franz-Theo S, Helmut B. Predominantly aqueous compositions in a fluffy powdery form approximating powdered solids behavior and process for forming same: US3393155[P]. 1968. |
[6] |
Bormashenko E, Bormashenko Y, Grynyov R, et al. Self-propulsion of liquid marbles: leidenfrost-like levitation driven by marangoni flow[J]. Journal of Physical Chemistry C, 2015, 119(18) : 9910-9915.
doi: 10.1021/acs.jpcc.5b01307 |
[7] |
Saczek J, Yao X, Zivkovic V, et al. Long-lived liquid marbles for green applications[J]. Advanced Functional Materials, 2021, 31(35) : 2011198.
doi: 10.1002/adfm.v31.35 |
[8] |
Gallo A, Tavares F, Das R, et al. How particle-particle and liquid-particle interactions govern the fate of evaporating liquid marbles[J]. Soft Matter, 2021, 17(33) : 7628-7644.
doi: 10.1039/D1SM00750E |
[9] |
Tenjimbayashi M, Fujii S. How liquid marbles break down: direct evidence for two breakage scenarios[J]. Small, 2021, 17(37) : 2102438.
doi: 10.1002/smll.v17.37 |
[10] |
Yue S, Shen W, Hapgood K. Characterisation of liquid marbles in commercial cosmetic products[J]. Advanced Powder Technology, 2016, 27(1) : 33-41.
doi: 10.1016/j.apt.2015.10.014 |
[11] |
Aussillous P, Quéré D. Properties of liquid marbles[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067) : 973-999.
doi: 10.1098/rspa.2005.1581 |
[12] |
Levine S, Bowen B D, Partridge S J. Stabilization of emulsions by fine particles i. partitioning of particles between continuous phase and oil/water interface[J]. Colloids and Surfaces, 1989, 38(2) : 325-343.
doi: 10.1016/0166-6622(89)80271-9 |
[13] |
Levine S, Bowen B D. Capillary interaction of spherical particles adsorbed on the surface of an oil/water droplet stabilized by the particles: 3. effective interfacial tension[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 70(1) : 33-45.
doi: 10.1016/0927-7757(93)80494-Y |
[14] |
McEleney P, Walker G M, Larmour I A, et al. Liquid marble formation using hydrophobic powders[J]. Chemical Engineering Journal, 2009, 147(2/3) : 373-382.
doi: 10.1016/j.cej.2008.11.026 |
[15] |
Nguyen T H, Hapgood K, Shen W. Observation of the liquid marble morphology using confocal microscopy[J]. Chemical Engineering Journal, 2010, 162(1) : 396-405.
doi: 10.1016/j.cej.2010.05.038 |
[16] | Fernandes A M, Mantione D, Gracia R, et al. From polymer latexes to multifunctional liquid marbles[J]. ACS Applied Materials & Interfaces, 2015, 7(7) : 4433-4441. |
[17] |
Tosun A, Erbil H Y. Evaporation rate of ptfe liquid marbles[J]. Applied Surface Science, 2009, 256(5) : 1278-1283.
doi: 10.1016/j.apsusc.2009.10.035 |
[18] |
Li X, Xue Y, Lv P, et al. Liquid plasticine: controlled deformation and recovery of droplets with interfacial nanoparticle jamming[J]. Soft Matter, 2016, 12(6) : 1655-1662.
doi: 10.1039/C5SM02765A |
[19] |
Shi H, Li X. Monolayer nanoparticle‐covered liquid marble production with low surface tension liquids[J]. Advanced Materials Interfaces, 2020, 7(21) : 2001081.
doi: 10.1002/admi.v7.21 |
[20] |
Huang J, Wang Z, Shi H, et al. Mechanical robustness of monolayer nanoparticle-covered liquid marbles[J]. Soft Matter, 2020, 16(19) : 4632-4639.
doi: 10.1039/D0SM00496K |
[21] |
McHale G, Shirtcliffe N J, Newton M I, et al. Self-organization of hydrophobic soil and granular surfaces[J]. Applied Physics Letters, 2007, 90(5) : 054110.
doi: 10.1063/1.2435594 |
[22] |
Eshtiaghi N, Liu J S, Shen W, et al. Liquid marble formation: spreading coefficients or kinetic energy?[J]. Powder Technology, 2009, 196(2) : 126-132.
doi: 10.1016/j.powtec.2009.07.002 |
[23] |
Marston J O, Zhu Y, Vakarelski I U, et al. Deformed liquid marbles: freezing drop oscillations with powders[J]. Powder Technology, 2012, 228:424-428.
doi: 10.1016/j.powtec.2012.06.003 |
[24] |
Supakar T, Moradiafrapoli M, Christopher G F, et al. Spreading, encapsulation and transition to arrested shapes during drop impact onto hydrophobic powders[J]. Journal of Colloid and Interface Science, 2016, 468:10-20.
doi: S0021-9797(16)30028-5 pmid: 26821147 |
[25] |
Liyanaarachchi K R, Ireland P M, Webber G B, et al. Electrostatic formation of liquid marbles and agglomerates[J]. Applied Physics Letters, 2013, 103(5) : 054105.
doi: 10.1063/1.4817586 |
[26] | Luo X J, Zhang X, Feng Y J. Liquid marbles: fabrication, physical properties, and applications[J]. Acta Physico-Chimica Sinica, 2020, 36(10) : 1910007. |
[27] |
Thomas C A, Munday H, Lobel B T, et al. Exploring the impact of particle material properties on electrostatic liquid marble formation[J]. The Journal of Physical Chemistry C, 2020, 124(48) : 26258-26267.
doi: 10.1021/acs.jpcc.0c07625 |
[28] |
Bormashenko E. Liquid marbles: properties and applications[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4) : 266-271.
doi: 10.1016/j.cocis.2010.12.002 |
[29] |
Oliveira N M, Reis R L, Mano J F. The potential of liquid marbles for biomedical applications: a critical review[J]. Advanced Healthcare Materials, 2017, 6(19) : 1700192.
doi: 10.1002/adhm.201700192 |
[30] |
Xue Y, Wang H, Zhao Y, et al. Magnetic liquid marbles: a “precise” miniature reactor[J]. Advanced Materials, 2010, 22(43) : 4814-4818.
doi: 10.1002/adma.201001898 |
[31] |
Binks B P, Tyowua A T. Influence of the degree of fluorination on the behaviour of silica particles at air-oil surfaces[J]. Soft Matter, 2013, 9(3) : 834-845.
doi: 10.1039/C2SM27395K |
[32] |
Sheng Y, Sun G, Wu J, et al. Silica-based liquid marbles as microreactors for the silver mirror reaction[J]. Angewandte Chemie International Edition, 2015, 54(24) : 7012-7017.
doi: 10.1002/anie.201500010 |
[33] |
Li X G, Shi H X, Hu Y Y. Rod-shaped liquid plasticine for gas diffusion detection[J]. Soft Matter, 2019, 15(15) : 3085-3088.
doi: 10.1039/C9SM00362B |
[34] |
Arbatan T, Al-Abboodi A, Sarvi F, et al. Tumor inside a pearl drop[J]. Advanced Healthcare Materials, 2012, 1(4) : 467-469.
doi: 10.1002/adhm.201200050 pmid: 23184778 |
[35] |
Oliveira N M, Correia C R, Reis R L, et al. Liquid marbles for high-throughput biological screening of anchorage-dependent cells[J]. Advanced Healthcare Materials, 2015, 4(2) : 264-270.
doi: 10.1002/adhm.201400310 pmid: 25091700 |
[36] |
Avramescu R E, Ghica M V, Dinu-Pirvu C, et al. Liquid marbles: from industrial to medical applications[J]. Molecules, 2018, 23(5) : 1120.
doi: 10.3390/molecules23051120 |
[37] |
Dandan M, Erbil H Y. Evaporation rate of graphite liquid marbles: comparison with water droplets[J]. Langmuir, 2009, 25(14) : 8362-8367.
doi: 10.1021/la900729d pmid: 19499944 |
[38] |
Cengiz U, Erbil H Y. The lifetime of floating liquid marbles: the influence of particle size and effective surface tension[J]. Soft Matter, 2013, 9(37) : 8980.
doi: 10.1039/c3sm51304a |
[39] |
Laborie B, Lachaussée F, Lorenceau E, et al. How coatings with hydrophobic particles may change the drying of water droplets: incompressible surface versus porous media effects[J]. Soft Matter, 2013, 9(19) : 8980-8991.
doi: 10.1039/c3sm51304a |
[40] |
Bhosale P S, Panchagnula M V, Stretz H A. Mechanically robust nanoparticle stabilized transparent liquid marbles[J]. Applied Physics Letters, 2008, 93(3) : 034109.
doi: 10.1063/1.2959853 |
[41] |
Roy P K, Binks B P, Bormashenko E, et al. Manufacture and properties of composite liquid marbles[J]. Journal of Colloid and Interface Science, 2020, 575:35-41.
doi: 10.1016/j.jcis.2020.04.066 |
[42] | Binks B P, Johnston S K, Sekine T, et al. Particles at oil-air surfaces: powdered oil, liquid oil marbles, and oil foam[J]. ACS Applied Materials & Interfaces, 2015, 7(26) : 14328-14337. |
[43] |
Liu Z, Fu X, Binks B P, et al. Mechanical compression to characterize the robustness of liquid marbles[J]. Langmuir, 2015, 31(41) : 11236-11242.
doi: 10.1021/acs.langmuir.5b02792 |
[44] |
McHale G, Newton M I. Liquid Marbles: Topical context within soft matter and recent progress[J]. Soft Matter, 2015, 11(13) : 2530-2546.
doi: 10.1039/c5sm00084j pmid: 25723648 |
[45] |
Zang D, Chen Z, Zhang Y, et al. Effect of particle hydrophobicity on the properties of liquid water marbles[J]. Soft Matter, 2013, 9(20) : 5067-5073.
doi: 10.1039/c3sm50421b |
[46] |
Zhou X, Lin X, White K L, et al. Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles[J]. Cellulose, 2016, 23(1) : 811-821.
doi: 10.1007/s10570-015-0856-z |
[47] |
Azizian S, Fujii S, Kasahara M, et al. Effect of particle morphology on mechanical properties of liquid marbles[J]. Advanced Powder Technology, 2019, 30(2) : 330-335.
doi: 10.1016/j.apt.2018.11.010 |
[48] |
Forny L, Pezron I, Saleh K, et al. Storing water in powder form by self-assembling hydrophobic silica nanoparticles[J]. Powder Technology, 2007, 171(1) : 15-24.
doi: 10.1016/j.powtec.2006.09.006 |
[49] | Liu Z, Zhang Y, Chen C, et al. Larger stabilizing particles make stronger liquid marble[J]. Small, 2019, 15(3) : 1804549. |
[50] |
Asaumi Y, Rey M, Oyama K, et al. Effect of stabilizing particle size on the structure and properties of liquid marbles[J]. Langmuir, 2020, 36(44) : 13274-13284.
doi: 10.1021/acs.langmuir.0c02265 |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|