日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (4): 495-507.doi: 10.3969/j.issn.2097-2806.2025.04.012
范佳宝1,韩薇薇1,*(),刘延强2,刘强3,吕红苗1,董三宝1,4,*(
)
收稿日期:
2024-05-17
修回日期:
2025-03-24
出版日期:
2025-04-22
发布日期:
2025-04-28
基金资助:
Jiabao Fan1,Weiwei Han1,*(),Yanqiang Liu2,Qiang Liu3,Hongmiao Lv1,Sanbao Dong1,4,*(
)
Received:
2024-05-17
Revised:
2025-03-24
Online:
2025-04-22
Published:
2025-04-28
Contact:
E-mail: 摘要:
泡沫排水采气技术是排除天然气井井底积液的有效方法。近年来,业内已开发出多种泡排剂,但相关进展仍需要进一步梳理。文章首先介绍了泡排剂的起泡与稳泡机理,总结了泡排用表面活性剂的特点及适用性,根据泡排剂构筑方式的不同,将其分为表面活性剂复配型泡排剂、表面活性剂-纳米材料/聚合物复合型泡排剂、超分子作用型泡排剂和刺激响应型泡排剂。文章系统介绍了各类泡排剂的研究进展及其增强泡沫性能的作用机理,最后提出了泡排剂的未来发展趋势。
中图分类号:
范佳宝, 韩薇薇, 刘延强, 刘强, 吕红苗, 董三宝. 天然气井排水采气用泡排剂研究进展[J]. 日用化学工业(中英文), 2025, 55(4): 495-507.
Jiabao Fan, Weiwei Han, Yanqiang Liu, Qiang Liu, Hongmiao Lv, Sanbao Dong. Research progress of foam drainage agents for gas well deliquification[J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 495-507.
表2
代表性表面活性剂复配型泡排剂体系性能"
泡排剂体系 | 关键性能 | 参考文献 |
---|---|---|
甜菜碱Gemini/油酸酰胺基羟基磺酸基甜菜碱(T-2)-CTAB | 25 ℃、30%凝析油、25×104 mg/L矿化水、20%甲醇溶液中的携液率分别可达83%,92%,68% | [ |
CHSB-SDS | 耐温80 ℃、耐油50%、耐盐12×104 mg/L | [ |
CHSB-SDS-NH4Cl-NaNO2 | 耐温80 ℃、耐盐12×104 mg/L,产气量从0增至2×103 m3/d | [ |
CHSB-SDS-氟碳表面活性剂(PFBS) | 耐温80 ℃、耐油50%、耐盐20×104 mg/L,增产26.35×104 m3 | [ |
AOS-CHSB-Gemini季铵盐(CAGB) | 耐温90 ℃、耐油50%、耐盐15×104 mg/L | [ |
月桂/棕榈酰胺丙基甜菜碱-月桂/棕榈Gemini季铵盐-月桂酰肌氨酸钠 | 耐温90 ℃、耐油30%、耐盐26×104 mg/L | [ |
烷基聚醚羧酸盐-烷基聚醚甜菜碱 | 温度140 ℃、煤油含量50%、盐度17.5×104 mg/L,携液率高于50% | [ |
表3
代表性表面活性剂-纳米颗粒、表面活性剂-聚合物复合型泡排剂性能"
泡排剂体系 | 关键性能 | 现场试验效果 | 参考文献 |
---|---|---|---|
阴离子-两性离子-氟碳表面活性剂-改性纳米SiO2 | 耐温150 ℃、耐油30%、耐盐25×104 mg/L、抗H2S浓度0.04% | [ | |
Gemini阴离子表面活性剂-改性纳米SiO2 | 耐温150 ℃、耐油50%,耐盐25×104 mg/L、抗H2S质量浓度2 000 mg/L | 平均产气从7 256 m3/d增加到11 329 m3/d | [ |
Gemini表面活性剂-纳米SiO2 | 耐温160 ℃、耐油40%、耐盐25×104 mg/L,抗H2S质量浓度100 mg/L、耐CO2 100% | 应用8685井次,产气量增加62.48%、油套压差降低18.9% | [ |
阴离子-两性离子-氟碳表面活性剂-改性纳米SiO2 | 耐温150 ℃、耐油30%、耐盐25×104 mg/L、抗H2S质量浓度2 000 mg/m3 | 生产时率提高2.31%、产气量增加509 m3/d | [ |
磺酸盐表面活性剂AS-1-802-疏水改性纳米SiO2 | 在90 ℃、20%柴油、10×104 mg/L矿化度、20%甲醇条件下,携液率达到61% | [ | |
SDS-CHSB-疏水纳米片g-C3N4 | 耐温90 ℃、耐油20%、耐盐10×104 mg/L | [ | |
CPB-聚丙烯酰胺(PAM) | 在175 ℃、10×104 mg/L矿化度,稳定性良好,起泡性及稳定性基本不受H2S分压的影响,携液量为167 mL/15 min | [ | |
可降解聚合物(PBAT)-CPB-有机蒙脱土(OMM) | 耐温30 ℃、耐盐25×104 mg/L,在96 h内可持续生成稳定的泡沫 | [ |
[1] | 曹光强, 姜晓华, 李楠, 等. 产水气田排水采气技术的国内外研究现状及发展方向[J]. 石油钻采工艺, 2019, 41(5): 614-623. |
[2] | Kelland Malcolm A. Production chemicals for the oil and gas industry[M]. Second Edition. Boca Raton: CRC Press-Taylor & Francis, 2014. |
[3] | Yang Jiang, Jovancicevic Vladimir, Ramachandran Sunder. Foam for gas well deliquification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309(1): 177-181. |
[4] | Sun Y Q, Zhang Y P, Liu Q W, et al. Research progress on new highly efficient foam drainage agents for gas wells (A review)[J]. Petroleum Chemistry, 2023, 63(9): 1119-1131. |
[5] | 田雨露, 王纪伟, 李加玉. 泡沫排水用起泡剂的应用进展[J]. 油田化学, 2021, 38(2): 368-373. |
[6] | Lee Yeongbeom, Baek Kye Hyun, Choe Kunhyung, et al. Development of mass production type rigid polyurethane foam for LNG carrier using ozone depletion free blowing agent[J]. Cryogenics, 2016, 80: 44-51. |
[7] | Hajimohammadi Ailar, Ngo Tuan, Mendis Priyan. How does aluminium foaming agent impact the geopolymer formation mechanism?[J]. Cement and Concrete Composites, 2017, 80: 277-286. |
[8] | Xiao Bao, Ye Zhongbin, Wang Junqi, et al. Law and mechanism study on salt resistance of nonionic surfactant (alkyl glycoside) foam[J]. Energies, 2022, 15(20): 7684. |
[9] | Wang Hetang, Guo Wangbiao, Zheng Chuanbao, et al. Effect of temperature on foaming ability and foam stability of typical surfactants used for foaming agent[J]. Journal of Surfactants and Detergents, 2017, 20(3): 615-622. |
[10] | Yu Xiaoyang, Miao Xuyang, Li Huan, et al. Influence of seawater on interfacial properties, foam performance and aggregation behaviour of fluorocarbon/hydrocarbon surfactant mixtures[J]. Journal of Molecular Liquids, 2022, 359: 119297. |
[11] | Sultan Kedir Abduljelil, Solbakken Jonas Stensbye, Aarra Morten Gunnar. Foamability and stability of anionic surfactant-anionic polymer solutions: Influence of ionic strength, polymer concentration, and molecular weight[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632: 127801. |
[12] |
Gao Minlan, Lei Fuqiang, Liu Qiaona, et al. The effect of alkyl chain length in quaternary ammonium cationic surfactants on their foaming properties[J]. Russian Journal of Physical Chemistry A, 2019, 93(13): 2735-2743.
doi: 10.1134/S0036024419130090 |
[13] |
Jia Xinru, Wei Ran, Xu Bo, et al. Green synthesis, surface activity, micellar aggregation, and foam properties of amide quaternary ammonium surfactants[J]. ACS Omega, 2022, 7(51): 48240-48249.
doi: 10.1021/acsomega.2c06353 pmid: 36591167 |
[14] | Alzobaidi Shehab, Da Chang, Tran Vu, et al. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants[J]. Journal of Colloid and Interface Science, 2017(488): 79-91. |
[15] | Da Chang, Alzobaidi Shehab, Jian Guoqing, et al. Carbon dioxide/water foams stabilized with a zwitterionic surfactant at temperatures up to 150 ℃ in high salinity brine[J]. Journal of Petroleum Science and Engineering, 2018. |
[16] | Lai Nanjun, He Yaoling, Zhang Xiaochen, et al. Synthesis and performance evaluation of temperature and salt-resistant foam drainage agent XY-1[J]. Arabian Journal for Science and Engineering, 2023, 48(7): 8911-8923. |
[17] | Wu Junwen, Jia Wenfeng, Zhang Rusheng, et al. The development and field test of high efficient foam unloading agent based on Gemini surfactant and nanomaterials [G]// SPE International Conference on Oilfield Chemistry. Galveston, Texas, USA:2019. |
[18] | 谢郢, 赖璐. 两性双子表面活性剂的合成及性能研究[J]. 日用化学工业, 2015, 45(8): 421-424. |
[19] | 邹华, 刘华荣, 梅平. 磺酸盐型Gemini表面活性剂复配体系的黏度性质研究[J]. 日用化学工业, 2016, 46(9): 502-506. |
[20] | 王磊, 石浪浪, 赖小娟, 等. 一种甜菜碱型Gemini表面活性剂的制备及其作为泡排剂主剂的性能评价[J]. 应用化工, 2018, 47(10): 2169-2173. |
[21] | Kumar Vinod, Pal Nilanjan, Jangir Anil Kumar, et al. Dynamic interfacial properties and tuning aqueous foamability stabilized by cationic surfactants in terms of their structural hydrophobicity, free drainage and bubble extent[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588: 124362. |
[22] | Li Chunling, Wang Zhikun, Wang Wendong, et al. Temperature and salt resistant CO2 responsive gas well foam: Experimental and molecular simulation study[J]. Applied Surface Science, 2022, 594: 153431. |
[23] |
Cuenca Victor Ezequiel, Marcos Marcos Fernández-Leyes, Falcone R Dario, et al. Interfacial dynamics and its relations with “negative” surface viscosities measured at water-air interfaces covered with a cationic surfactant[J]. Langmuir, 2019, 35(25): 8333-8343.
doi: 10.1021/acs.langmuir.9b00534 pmid: 31124690 |
[24] |
Roncoroni Miguel Angel, Romero Pedro, Montes Jesús, et al. Enhancement of a foaming formulation with a zwitterionic surfactant for gas mobility control in harsh reservoir conditions[J]. Petroleum Science, 2021, 18(5): 1409-1426.
doi: 10.1016/j.petsci.2021.08.004 |
[25] |
Qu Chaochao, Wang Ji, Yin Hongyao, et al. Condensate oil-tolerant foams stabilized by an anionic-sulfobetaine surfactant mixture[J]. ACS Omega, 2019, 4(1): 1738-1747.
doi: 10.1021/acsomega.8b02325 pmid: 31459431 |
[26] | Zhou Hao, Qu Chaochao, Lu Guangliang, et al. Deliquification of low-productivity natural gas wells with in situ generated foams and heat[J]. Energy & Fuels, 2021, 35(12): 9873-9882. |
[27] |
李祖友, 唐雷, 殷鸿尧, 等. 川西老区中浅层新型泡排药剂研发与应用[J]. 西南石油大学学报(自然科学版), 2022, 44(3): 176-187.
doi: 10.11885/j.issn.1674-5086.2022.01.26.01 |
[28] |
瞿超超, 刘正中, 殷鸿尧, 等. 新型排水采气用抗凝析油泡排剂[J]. 石油学报, 2020, 41(7): 865-874.
doi: 10.7623/syxb202007008 |
[29] | 张志升, 沈产量, 李建勋, 等. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[30] | Dong Sanbao, Fan Jiabao, Lv Hongmiao, et al. Excellent condensate and salt-resistant foam by anionic-zwitterionic-cationic Gemini surfactants compounds for gas well deliquification[J]. Journal of Surfactants and Detergents, 2024, 27(1): 135-145. |
[31] | 徐海民. 新型复合泡排剂抗油性能研究与应用[J]. 断块油气田, 2022, 29(3): 422-426. |
[32] | Yu Ying, García Brayan F, Saraji Soheil. Surfactant viscoelasticity as a key parameter to improve supercritical CO2 foam stability/foamability and performance in porous media[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 282: 104311. |
[33] | Li Songyan, Li Zhaomin, Wang Peng. Experimental study of the stabilization of CO2 foam by sodium dodecyl sulfate and hydrophobic nanoparticles[J]. Industrial & Engineering Chemistry Research, 2016, 55: 1243-1253. |
[34] |
武俊文, 雷群, 熊春明, 等. 适用于深层产水气井的纳米粒子泡排剂[J]. 石油勘探与开发, 2016, 43(4): 636-640.
doi: 10.11698/PED.2016.04.17 |
[35] |
熊春明, 曹光强, 张建军, 等. 适应中国主要气田的纳米粒子泡排剂系列[J]. 石油勘探与开发, 2019, 46(5): 966-973.
doi: 10.11698/PED.2019.05.16 |
[36] | 杨易骏, 王锦昌, 周瑞立, 等. 纳米粒子泡排剂在大牛地低含硫气井中的应用及评价[J]. 石油化工应用, 2019, 38(7): 20-25. |
[37] | Sheng Youjie, Xue Menghua, Wang Yubo, et al. Aggregation behavior and foam properties of the mixture of hydrocarbon and fluorocarbon surfactants with addition of nanoparticles[J]. Journal of Molecular Liquids, 2021, 323: 115070. |
[38] | Wang Jing, Chen Yv, Wang Shun, et al. Investigations on the influencing mechanisms of SiO2 nanoparticles on foam stability[J]. Energy & Fuels, 2021, 35(24): 20016-20025. |
[39] | Xu Long, Rad Mina Doroudian, Telmadarreie Ali, et al. Synergy of surface-treated nanoparticle and anionic-nonionic surfactant on stabilization of natural gas foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550: 176-185. |
[40] | 马超, 谷文, 伍希林, 等. 疏水纳米二氧化硅强化泡排剂的制备及性能[J]. 长江大学学报(自然科学版), 2024: 1-8. |
[41] | Lai Lidan, Zhang Tailiang, Zheng Cunchuan. Study of foam drainage agent based on g-C3N4 nanosheets reinforced stabilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657: 130607. |
[42] | Zhang Chunquan, Xue Yan, Huang Dan, et al. Design and fabrication of anionic/cationic surfactant foams stabilized by lignin-cellulose nanofibrils for enhanced oil recovery[J]. Energy & Fuels, 2020, 34(12): 16493-16501. |
[43] | 惠小敏, 张庆生, 王树涛, 等. 甜菜碱/聚合物复配泡排剂性能研究[J]. 油田化学, 2016, 33(2): 316-318. |
[44] | Yang Jiang, Fan Rongrong, He Xiujuan, et al. Slow-releasing foam sticks based on degradable polymer nanocomposite for gas well deliquification[J]. Geoenergy Science and Engineering, 2024, 233: 212582. |
[45] | Li Tong, Fang Jichao, Jiao Baolei, et al. Study on a novel gelled foam for conformance control in high temperature and high salinity reservoirs[J]. Energies, 2018, 11(6): 1364. |
[46] | Chen Shaohua, Han Ming, Alsofi Abdulkareem M. Synergistic effects between different types of surfactants and an associating polymer on surfactant-polymer flooding under high-temperature and high-salinity conditions[J]. Energy & Fuels, 2021, 35(18): 14484-14498. |
[47] | Wu Xuepeng, Huang Yongping, Fang Sisi, et al. CO2-responsive smart wormlike micelles based on monomer and “pseudo” gemini surfactant[J]. Journal of Industrial and Engineering Chemistry, 2018, 60: 348-354. |
[48] | Ye Shengfeng, Zhai Zhaolan, Shang Shibin, et al. pH-Induced hydrogels and viscoelastic solutions constructed by a Rosin-Based Pseudo-Gemini surfactant[J]. Journal of Molecular Liquids, 2022, 361: 119445. |
[49] | Zhang Yongmin, An Pengyun, Qin Anni, et al. Self-assembly and rheological behaviors of dynamic pseudo-oligomeric surfactant[J]. Colloid and Polymer Science, 2016, 294(11): 1743-1754. |
[50] | Han Weiwei, Fan Jiabao, Qiang Taotao, et al. A novel salt and condensate-resistant foam co-stabilized by mixtures of surfactants and citric acid for gas well deliquification[J]. Journal of Molecular Liquids, 2023, 385: 122426. |
[51] | Dong Sanbao, Fan Jiabao, Liu Chenwei, et al. Experimental and computational investigations on foaming properties of anionic-nonionic-zwitterionic surfactants and amino acid compounds to address the liquid loading of natural gas wells[J]. Journal of Molecular Liquids, 2023, 382: 122016. |
[52] | Han Weiwei, Lv Hongmiao, Kar Taniya, et al. Experimental studies and computational exploration on an exceptionally salt/condensate resistant gas well foaming mixture compromising amino-betaine-ammonium surfactants and dodecanol[J]. Journal of Molecular Liquids, 2024, 397: 124048. |
[53] |
Jia Wenfeng, Xian Chenggang, Wu Junwen. Temperature-sensitive foaming agent developed for smart foam drainage technology[J]. RSC Advances, 2022, 12(36): 23447-23453.
doi: 10.1039/d2ra04034d pmid: 36090426 |
[54] | Li Jia, Wen Ming, Yang Jian, et al. Development and characterization of thermo-sensitive biomass-based smart foam drainage gas recovery treatment agent[J]. Geoenergy Science and Engineering, 2023, 230: 212263. |
[55] | Li Jia, Wen Ming, Lei Lei, et al. Development and analysis of pH-sensitive surfactants for enhancing foam drainage gas retrieval[J]. Journal of Molecular Liquids, 2024, 396: 124106. |
[56] | Li Chunlin, Wang Zhikun, Wang Wendong, et al. Temperature and salt resistant CO2 responsive gas well foam: Experimental and molecular simulation study[J]. Applied Surface Science, 2022, 594: 153431. |
[1] | 张志升, 沈产量, 李建勋, 刘延强, 韩薇薇, 董三宝. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[2] | 牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924. |
[3] | 周媛, 杨秀全, 张军, 白亮, 吴志宇. 不同酯化度烷基糖苷磺基琥珀酸酯盐的合成与性能[J]. 日用化学工业(中英文), 2023, 53(7): 765-772. |
[4] | 喻冬秀,金相新,刘嘉欣,李俊朗. 纳米银对椰油酰基谷氨酸三乙醇胺盐表面活性的影响[J]. 日用化学工业, 2022, 52(4): 363-369. |
[5] | 郭华,徐进,何云平,许虎君. 椰油酰水解燕麦蛋白钾对氨基酸洁面膏的性能影响[J]. 日用化学工业(中英文), 2022, 52(12): 1307-1313. |
[6] | 薛绘,杨盼盼,吕旭阳,韩丹,陈金龙,蒋丽刚. 化妆品常用肤感改良粉体的性质与发展趋势[J]. 日用化学工业, 2022, 52(1): 77-83. |
[7] | 刘佳佳,许虎君. 脂肪酰胺丙基磷酸酯甜菜碱的合成和性能研究[J]. 日用化学工业, 2020, 50(7): 446-451. |
[8] | 李珩,蒋佳洹,钟颖新,徐朝华,郑晓瑞. 含陈皮提取物的氨基酸皂的制备及性能研究[J]. 日用化学工业, 2020, 50(6): 408-412. |
[9] | 刘腾,郑元林,葛纪者,杨伟栋,张朝忠. 脂肪酶对水基油墨清洗剂洗涤能力的影响研究[J]. 日用化学工业, 2020, 50(2): 107-111. |
[10] | 周媛,杨秀全,张军. 烷基糖苷磺基琥珀酸酯盐与烷基糖苷的复配性能和相行为[J]. 日用化学工业, 2020, 50(1): 20-25. |
[11] | 赖小娟,刘 佩,田 伟,汪 洁,惠艳妮,贾友亮. 连结基对甜菜碱型双子表面活性剂表面活性和泡沫性能的影响[J]. 日用化学工业, 2018, 48(10): 558-563. |
[12] | 汤小芹, 陈明华, 李芳芳, 任天辉. 椰油酰基甘氨酸钾部分酸化对洁面膏性能的影响[J]. 日用化学工业, 2017, 47(7): 403-407. |
[13] | 邹新源,罗文利,马德胜,周新宇,田茂章. 泡沫复合驱用癸基糖苷磺酸盐的合成及性能研究[J]. 日用化学工业, 2016, 46(6): 320-323. |
[14] | 武文涛,张永民,刘雪锋. 叔胺基CO2开关表面活性剂的合成及性能研究[J]. 日用化学工业, 2016, 46(5): 251-256. |
[15] | 任龙芳,孙燕情,雷森. 硫酸化妥尔油表面活性剂的合成及其泡沫性能研究[J]. 日用化学工业, 2016, 46(10): 561-564. |
|