日用化学工业 ›› 2021, Vol. 51 ›› Issue (5): 383-389.doi: 10.3969/j.issn.1001-1803.2021.05.002
收稿日期:
2021-04-27
出版日期:
2021-05-22
发布日期:
2021-05-21
通讯作者:
金建明
作者简介:
张雨彤(1998-),女,吉林省吉林市磐石市人,E-mail: 基金资助:
ZHANG Yu-tong1,2(),SONG Yang1,2,WU Hua1,2,JIN Jian-ming1,2(
)
Received:
2021-04-27
Online:
2021-05-22
Published:
2021-05-21
Contact:
Jian-ming JIN
摘要:
皮肤保湿是护肤的基础。人体自身的天然保湿屏障角质层和真皮层对皮肤保湿和储水发挥了重要的作用。通过外源性保湿方法也可以达到皮肤保湿的效果。许多植物提取物对皮肤有明显的水合和保湿作用。文章简单介绍了皮肤表皮和真皮的保湿机理以及保湿方法,主要介绍化妆品中植物提取物的天然保湿成分,主要为植物多糖、油、三萜皂苷、甾体皂苷、黄酮和多酚。植物提取物的保湿机制根据其成分结构有所不同:植物提取物中的水溶性保湿成分主要通过羟基或酚羟基的氢键作用吸收和保持水分,它们对水的不同结合能力从而影响皮肤的水合能力;而植物油的脂肪酸成分在皮肤上形成一层薄膜保持水分,防止皮肤干燥。除了保湿作用,许多植物提取物还具有抗氧化和抗炎等功效,在化妆品中具有很好的应用前景。本文通过对植物提取物的天然保湿成分的详细阐述,以期为植物原料更好地应用到保湿化妆品中提供借鉴。
中图分类号:
张雨彤,宋阳,吴华,金建明. 化妆品植物原料(Ⅲ)——在保湿化妆品中的研究与开发[J]. 日用化学工业, 2021, 51(5): 383-389.
ZHANG Yu-tong,SONG Yang,WU Hua,JIN Jian-ming. Botanical cosmetic ingredient (III) Research and development of natural moisturizers in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2021, 51(5): 383-389.
表 1
具有保湿作用的植物多糖"
名称 | 来源 | 主要糖基组成 | 功效 | 参考文献 |
---|---|---|---|---|
芦荟多糖 | 库拉索芦荟 | 甘露糖基、半乳糖基、葡萄糖基和鼠李糖基等组成的乙酰化甘露聚糖 | 保湿,伤口愈合和抗氧化 | [ |
仙人掌多糖 | 仙人掌 | 阿拉伯糖基、鼠李糖基、木糖基、半乳糖基、甘露糖基、葡萄糖基和葡萄糖醛酸基 | 保湿,抗炎,抗氧化和抗菌 | [ |
黄芪多糖 | 黄芪 | 主要为葡聚糖和杂多糖 | 保湿,抗炎,抗氧化和抗菌 | [ |
甘草多糖 | 甘草 | 木糖基、甘露糖基、葡萄糖基和半乳糖基 | 保湿和抗氧化 | [ |
石斛多糖 | 铁皮石斛 | 葡萄糖基、甘露糖基和半乳糖基组成的乙酰化葡甘露聚糖 | 保湿,抗炎,抗氧化,抗菌,抗衰老和促进头发生长 | [ |
火参多糖 | 火参 | 半乳糖基、葡萄糖基和甘露糖基组成并含有氨基的杂多糖 | 保湿,抗炎,抗氧化和抗衰老 | [ |
表 2
具有保湿作用的海藻多糖"
名称 | 来源 | 主要糖基组成 | 功效 | 参考文献 |
---|---|---|---|---|
海藻酸 | 褐藻 | 甘露糖醛酸基和古洛糖醛酸基 | 保湿,增稠,促进伤口愈合,胶凝剂和抗菌 | [ |
孤枝根枝藻提取物 | 孤枝根枝藻 | 阿拉伯糖基、鼠李糖基、木糖基和半乳糖基 | 保湿,增稠剂,乳化剂,抗衰老 | [ |
褐藻糖胶 | 褐藻 | 硫酸化的岩藻糖基、葡萄糖基、葡萄糖醛酸基、鼠李糖基、甘露糖基、半乳糖基和木糖基 | 抗氧化,抗炎,维持皮肤弹性,防止皮肤老化,减少皮肤色素沉着和抗菌 | [ |
马尾藻多糖 | 马尾藻 | 岩藻糖的硫酸酯化多糖 | 保湿,抗氧化,美白和抗衰老 | [ |
石莼多糖 | 绿藻 | 葡萄糖醛酸基、鼠李糖基-3-硫酸盐和艾杜糖醛酸基 | 保湿,抗氧化和抗凝血 | [ |
表 3
具有保湿作用的植物油"
名称 | 来源 | 主要成分 | 功效 | 参考文献 |
---|---|---|---|---|
小麦胚芽油 | 小麦 | 亚油酸、油酸和亚麻酸等,维生素 | 保湿,抗氧化和促进伤口愈合 | [ |
椰子油 | 椰子 | 月桂酸、肉豆蔻酸、棕榈酸、辛酸、癸酸、油酸和亚油酸等 | 保湿,抗炎,抗紫外和抗菌 | [ |
沙棘油 | 沙棘 | 亚油酸、油酸、棕榈油酸和亚麻酸等,维生素 | 保湿,抗炎,刺激表皮保湿、抗氧化,抗紫外,皮肤再生,促进伤口愈合,延缓衰老和护发 | [ |
树莓油 | 树莓 | 亚油酸、棕榈酸和硬脂酸等,维生素、生育酚和神经酰胺 | 保湿,抗衰老,美白,抗紫外和增加皮肤弹性 | [ |
葡萄籽油 | 葡萄 | 油酸和亚油酸,ω-6脂肪酸,原花青素和酚酸等 | 保湿,抗炎,抗氧化,抗菌和促进伤口愈合 | [ |
[1] | Bonté F. Skin moisturization mechanisms: new data[J]. Annales Pharmaceutiques Franaises, 2011,69(3): 135-141. |
[2] |
Lodén M. Effect of moisturizers on epidermal barrier function[J]. Clinics in Dermatology, 2012,30(3): 286-296.
doi: 10.1016/j.clindermatol.2011.08.015 |
[3] |
Rawlings A V, Harding C R. Moisturization and skin barrier function[J]. Dermatologic Therapy, 2004,17(1): 43-48.
doi: 10.1111/dth.2004.17.issue-s1 |
[4] | Fore J. A review of skin and the effects of aging on skin structure and function[J]. Ostomy Wound Management, 2006,52(9): 36-37. |
[5] |
Kogan G, Soltes L, Stern R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology Letters, 2007,29(1): 17-25.
doi: 10.1007/s10529-006-9219-z |
[6] |
Kim H, Kim J T, Barua S, et al. Seeking better topical delivery technologies of moisturizing agents for enhanced skin moisturization[J]. Expert Opinion on Drug Delivery, 2018,15(1): 17-31.
doi: 10.1080/17425247.2017.1306054 |
[7] | Bollag W B, Lorry A, Joseph W, et al. Aquaporin-3 in the epidermis: more than skin deep[J]. American Journal of Physiology. Cell Physiology, 2020,318(6): 1144-1153. |
[8] |
Silva V, Schulman M A, Ferelli C, et al. Hydrating effects of moisturizer active compounds incorporated into hydrogels: in vivo assessment and comparison between devices[J]. Journal of Cosmetic Dermatology, 2010,8(1): 32-39.
doi: 10.1111/jcd.2009.8.issue-1 |
[9] |
Kim S, Ly B K, Ha J H, et al. A consistent skin care regimen leads to objective and subjective improvements in dry human skin: investigator-blinded randomized clinical trial[J]. Journal of Dermatological Treatment, 2020,31:1-22.
doi: 10.1080/09546634.2019.1654596 |
[10] |
Shi L. Bioactivities, isolation and purification methods of polysaccharides from natural products: a review[J]. International Journal of Biological Macromolecules, 2016,92:37-48.
doi: 10.1016/j.ijbiomac.2016.06.100 |
[11] | Jesumani V, Du H, Pei P, et al. Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum [J]. PLoS ONE, 2020,15(1): 227308. |
[12] | Malviya R, Srivastava P, Kulkarni G T. Applications of mucilages in drug delivery-a review[J]. Advances in Biological Research, 2011,5(1): 1-7. |
[13] |
Damasceno G, Silva R, Fernandes J M, et al. Use of Opuntia ficus-indica (L.) Mill extracts from Brazilian Caatinga as an alternative of natural moisturizer in cosmetic formulations[J]. Brazilian Journal of Pharmaceutical Sciences, 2016,52(3): 459-470.
doi: 10.1590/s1984-82502016000300012 |
[14] |
Du B, Bian Z, Xu B. Skin health promotion effects of natural beta-glucan derived from cereals and microorganisms: a review[J]. Phytotherapy Research, 2014,28(2): 159-166.
doi: 10.1002/ptr.4963 |
[15] |
Alvarado-Morales G, Minjares-Fuentes R, Contreras-Esquivel J C, et al. Application of thermosonication for Aloe vera (Aloe barbadensis Miller) juice processing: impact on the functional properties and the main bioactive polysaccharides[J]. Ultrasonics Sonochemistry, 2019,56(2): 125-133.
doi: 10.1016/j.ultsonch.2019.03.030 |
[16] |
Manhivi V E, Venter S, Amonsou E O, et al. Composition, thermal and rheological properties of polysaccharides from amadumbe (Colocasia esculenta) and cactus (Opuntia spp)[J]. Carbohydrate Polymers, 2018,195(7): 163-169.
doi: 10.1016/j.carbpol.2018.04.062 |
[17] |
Shirazinia R, Rhimi V B, Kehkhaie A R, et al. Opuntia dillenii: a forgotten plant with promising pharmacological properties[J]. Journal of Pharmacopuncture, 2019,22(1): 16-27.
doi: 10.3831/KPI.2019.22.002 pmid: 30988997 |
[18] | Salehi B, Carneiro J N P, Rocha J E, et al. Astragalus species: insights on its chemical composition toward pharmacological applications[J]. Phytotherapy Research, 2020, 1-32. |
[19] |
Rozi P, Abuduwaili A, Bao X, et al. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza[J]. International Journal of Biological Macromolecules, 2020,145:364-371.
doi: 10.1016/j.ijbiomac.2019.12.107 |
[20] |
Guo L, Qi J, Du D, et al. Current advances of Dndrobium officinale polysaccharides in dermatology: a literature review[J]. Pharmaceutical Biology, 2020,58(1): 664-673.
doi: 10.1080/13880209.2020.1787470 |
[21] |
Chou C H, Sung T J, Hu Y N, et al. Chemical analysis, moisture-preserving, and antioxidant activities of polysaccharides from Pholiota nameko by fractional precipitation[J]. International Journal of Biological Macromolecules, 2019,131:1021-1031.
doi: 10.1016/j.ijbiomac.2019.03.154 |
[22] | Becker L C, Bergfeld W F, Belsito D V, et al. Safety assessment of Panax spp root-derived ingredients as used in cosmetics[J]. International Journal of Toxicology, 2015,34(3): 5-42. |
[23] | Cikoš A M, Jerković I, Molnar M, et al. New trends for macroalgal natural products applications[J]. Natural Product Research, 2019,33(8): 1180-1191. |
[24] |
Wang H-M D, Chen C-C, Pauline H, et al. Exploring the potential of using algae in cosmetics[J]. Bioresource Technology, 2015,184:355-362.
doi: 10.1016/j.biortech.2014.12.001 |
[25] |
Wijesinghe W A J P, Jeon Y J. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: a review[J]. Phytochemistry Reviews, 2011,10(3): 431-443.
doi: 10.1007/s11101-011-9214-4 |
[26] |
Catarino M D, Silva A M S, Cardoso S M. Phycochemical constituents and biological activities of Fucus spp[J]. Marine Drugs, 2018,16(8): 249.
doi: 10.3390/md16080249 |
[27] |
Salehi B, Sharifi-Rad J, Seca A, et al. Current trends on seaweeds: looking at chemical composition, phytopharmacology and cosmetic applications[J]. Molecules, 2019,24(22): 4182.
doi: 10.3390/molecules24224182 |
[28] | Leelapornpisid P, Mungmai L, Sirithunyalug B, et al. A novel moisturizer extracted from freshwater macroalga [Rhizoclonium hieroglyphicum (C. Agardh) K tzing] for skin care cosmetic[J]. Chiang Mai Journal of Science, 2014,41(4152): 1195-1207. |
[29] |
Fernando I S, Sanjeewa K A, Samarakoon K W, et al. The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities[J]. Journal of Applied Phycology, 2018,30(6): 3223-3232.
doi: 10.1007/s10811-018-1415-4 |
[30] | Fernando I P S, Kim K-N, Kim D, et al. Algal polysaccharides: potential bioactive substances for cosmeceutical applications[J]. Critical Reviews in Biotechnology, 2019,33(1): 99-113. |
[31] |
Jesumani V, Du H, Pei P, et al. Unravelling property of polysaccharides from Sargassum sp. as an anti-wrinkle and skin whitening property[J]. International Journal of Biological Macromolecules, 2019,140:216-224.
doi: 10.1016/j.ijbiomac.2019.08.027 |
[32] |
Ghanbarzadeh M, Golmoradizadeh A, Homaei A. Carrageenans and carrageenases: versatile polysaccharides and promising marine enzymes[J]. Phytochemistry Reviews, 2018,17(3): 535-571.
doi: 10.1007/s11101-018-9548-2 |
[33] |
Michalak M, Kietyka-Dadasiewicz A. Oils from fruit seeds and their dietetic and cosmetic significance[J]. Herba Polonica, 2018,64(4): 63-70.
doi: 10.2478/hepo-2018-0026 |
[34] |
Saraf S, Sahu S, Kaur C D, et al. Comparative measurement of hydration effects of herbal moisturizers[J]. Pharmacognosy Research, 2010,2(3): 146-151.
doi: 10.4103/0974-8490.65508 |
[35] |
Lin T K, Zhong L, Santiago J L. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils[J]. International Journal of Molecular Sciences, 2017,19(1): 70.
doi: 10.3390/ijms19010070 |
[36] |
Varma S R, Sivaprakasam T O, Arumugam I, et al. In vitro anti-inflammatory and skin protective properties of virgin coconut oil[J]. Journal of Traditional and Complementary Medicine, 2019,9(1): 5-14.
doi: 10.1016/j.jtcme.2017.06.012 |
[37] |
Verallo-Rowell V M, Dillague K M, Syah-Tjundawan B S. Novel antibacterial and emollient effects of coconut and virgin olive oils in adult atopic dermatitis[J]. Dermatitis, 2008,19(6): 308-315.
pmid: 19134433 |
[38] |
Zielińska A, Nowak I. Abundance of active ingredients in sea-buckthorn oil[J]. Lipids in Health and Disease, 2017,16(1): 95.
doi: 10.1186/s12944-017-0469-7 |
[39] |
Rattanawiwatpong P, Wanitphakdeedecha R, Bumrungpert A, et al. Anti-aging and brightening effects of a topical treatment containing vitamin C, vitamin E, and raspberry leaf cell culture extract: a split-face, randomized controlled trial[J]. Journal of Cosmetic Dermatology, 2020,19(3): 671-676.
doi: 10.1111/jocd.13305 pmid: 31975502 |
[40] |
Tito A, Bimonte M, Carola A, et al. An oil‐soluble extract of Rubus idaeus cells enhances hydration and water homeostasis in skin cells[J]. International Journal of Cosmetic Science, 2015,37(6): 588-594.
doi: 10.1111/ics.12236 pmid: 25940647 |
[41] | Moses T, Papadopoulou K K, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives[J]. Critical Reviews in Biochemistry & Molecular Biology, 2014,49(6): 439-462. |
[42] |
Inamdar P K, Yeole R D, Ghogare A B, et al. Determination of biologically active constituents in Centella asiatica[J]. Journal of Chromatography A, 1996,742:127-130.
doi: 10.1016/0021-9673(96)00237-3 |
[43] | Massimo M, Adele S. The 24-hour skin hydration and barrier function effects of a hyaluronic 1%, glycerin 5%, and Centella asiatica stem cells extract moisturizing fluid: an intra-subject, randomized, assessor-blinded study[J]. Clinical Cosmetic & Investigational Dermatology, 2017,10:311-315. |
[44] |
Shin K O, Choe S J, Uchida Y, et al. Ginsenoside Rb1 enhances keratinocyte migration by a sphingosine-1-phosphate-dependent Mechanism[J]. Journal of Medicinal Food, 2018,21(11): 1129-1136.
doi: 10.1089/jmf.2018.4246 |
[45] |
Kim E, Kim D, Yoo S, et al. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng [J]. Journal of Ginseng Research, 2018,42(2): 218-224.
doi: 10.1016/j.jgr.2017.03.007 |
[46] |
Kayukawa C M, Oliveira M S, Kaspchak E, et al. Quillaja bark saponin effects on Kluyveromyces lactis β-galactosidase activity and structure[J]. Food Chemistry, 2020,303:125388.
doi: S0308-8146(19)31502-X pmid: 31454757 |
[47] | Semerdjieva I B, Zheljazkov V D. Chemical constituents, biological properties, and uses of Tribulus terrestris: a review[J]. Natural Product Communications, 2019,14(8) . |
[48] |
Zofia N U, Tomasz B. Saponins as natural raw materials for increasing the safety of bodywash cosmetic use[J]. Journal of Surfactants and Detergents, 2018,21(6): 767-776.
doi: 10.1002/jsde.2018.21.issue-6 |
[49] | Kim J, Cho N, Kim E M, et al. Cudrania tricuspidata leaf extracts and its components, chlorogenic acid, kaempferol, and quercetin, increase claudin 1 expression in human keratinocytes, enhancing intercellular tight junction capacity[J]. Applied Biological Chemistry, 2020,63(8): 399-402. |
[50] |
Lv X, Liu T, Ma H, et al. Preparation of essential oil-based microemulsions for improving the solubility, pH stability, photostability, and skin permeation of quercetin[J]. Aaps Pharmscitech, 2017,18(8): 3097-3103.
doi: 10.1208/s12249-017-0798-x |
[51] |
Karuppagounder V, Arumugam S, Thandavarayan R A, et al. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis[J]. Drug Discovery Today, 2016,21(4): 632-639.
doi: 10.1016/j.drudis.2016.02.011 |
[52] |
Singh O, Khanam Z, Misra N, et al. Chamomile (Matricaria chamomilla L.): an overview[J]. Pharmacognosy Reviews, 2011,5(9): 82-95.
doi: 10.4103/0973-7847.79103 |
[53] | Amanda I, Cecilia G C, Jhon J, et al. Plants of the genus Bambusa: importance and application in the pharmaceutical, cosmetic and food industry[J]. Vitae, 2009,16(3): 396-405. |
[54] |
Wei X, Liu Y, Xiao J, et al. Protective effects of tea polysaccharides and polyphenols on skin[J]. Journal of Agricultural and Food Chemistry, 2009,57(17): 7757-7762.
doi: 10.1021/jf901340f |
[55] |
Hsu S. Green tea and the skin[J]. Journal of the American Academy of Dermatology, 2005,52(6): 1049-1059.
doi: 10.1016/j.jaad.2004.12.044 |
[56] |
Diaconeasa Z, Stirbu I, Xiao J, et al. Anthocyanins, vibrant color pigments, and their role in skin cancer prevention[J]. Biomedicines, 2020,8(9): 336-386.
doi: 10.3390/biomedicines8090336 |
[57] |
Sarikurkcu C, Locatelli M, Tartaglia A, et al. Enzyme and biological activities of the water extracts from the plants Aesculus hippocastanum, Olea europaea and Hypericum perforatum that are used as folk remedies in turkey[J]. Molecules, 2020,25(5): 1202-1217.
doi: 10.3390/molecules25051202 |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|