欢迎访问《日用化学工业(中英文)》,今天是

日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (10): 1284-1290.doi: 10.3969/j.issn.2097-2806.2025.10.008

• 开发与应用 • 上一篇    下一篇

基于机器学习模型评估化妆品原料眼刺激性

黄丽霞1,刘梓乐2,潘丙珍1,*(),鲍佳生1,乔栖梧1,周智明3   

  1. 1.广州海关技术中心,广东 广州 510623
    2.广东工业大学 计算机学院,广东 广州 510006
    3.广东省药品检验所,广东 广州 510663
  • 收稿日期:2024-11-19 修回日期:2025-10-20 出版日期:2025-10-22 发布日期:2025-12-03
  • 通讯作者: 潘丙珍
  • 基金资助:
    广州海关科技项目(2022GZCK06);广东省药品监督管理局化妆品风险评估重点实验室专项(2023ZDZ11);广州海关2023年科研项目(2023GZCK07)

Assessment of eye irritation of cosmetic ingredients based on machine learning

Lixia Huang1,Zile Liu2,Bingzhen Pan1,*(),Jiasheng Bao1,Xiwu Qiao1,Zhiming Zhou3   

  1. 1. Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510623, China
    2. College of Computer Science and Technology, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
    3. Guangdong Institute for Drug Control, Guangzhou, Guangdong 510663, China
  • Received:2024-11-19 Revised:2025-10-20 Online:2025-10-22 Published:2025-12-03
  • Contact: Bingzhen Pan

摘要:

为提升基于计算机模拟的化妆品原料眼刺激性替代试验评估方法的预测效果,文章提出一种结合集成学习算法与相似度算法的机器学习融合模型。研究通过收集84种化妆品原料的荧光素漏出试验、中性红摄取试验等六种体外替代试验及体内试验数据,验证了融合模型的预测评估性能,且最终验证结果表明模型预测评估准确率达100%。此外,为提高机器学习融合模型在化妆品原料评估实际应用中的便捷性、高效性和可解释性,文章进一步提出基于融合模型的分层组合体外替代试验评估方法。该方法包括通过计算机模拟生成的预测评估速查表和基于试验数据分析得出的分层组合评估策略,二者协同配合,结合分层组合评估策略的体外试验结果,可快速预测化妆品原料的眼刺激性。

关键词: 眼刺激性, 替代方法, 机器学习, 分层组合评估

Abstract:

To enhance the predictive performance of computer simulation-based alternative test methods for assessing the eye irritation potential of cosmetic ingredients, this study proposes a machine learning hybrid model that combines ensemble learning algorithms with similarity algorithms. The research collected data from six in vitro alternative test results, such as the fluorescein leakage test and neutral red uptake test, for 84 cosmetic ingredients, as well as data from in vivo test results. The predictive assessment effectiveness of the machine learning hybrid model was validated based on the collected test result data. The final experimental results indicate that the proposed machine learning hybrid model performs well in predicting the irritancy of cosmetic ingredients based on in vitro alternative test result data, with a predictive assessment accuracy rate of 100% in the validation experiment results. Furthermore, to improve the convenience, efficiency, and interpretability of the machine learning hybrid model in practical use, this study further proposes a method for evaluating the eye irritation potential of cosmetic ingredients based on a stratified combination of in vitro alternative tests, which is based on the hybrid model. This method includes a quick reference guide for predictive evaluation generated through computer simulation and a hierarchical combination evaluation strategy derived from experimental data analysis. By integrating the results of in vitro tests conducted under this tiered strategy, it enables the rapid prediction of eye irritation potential of cosmetic ingredients.

Key words: eye irritation, alternative methods, machine learning, stratified combination assessment

中图分类号: 

  • TQ658