[1] |
刘必心, 侯吉瑞, 张宁. 氢氧化钠对重烷基苯磺酸钠水溶液/油体系界面张力的影响[J]. 日用化学工业, 2014, 44 (4) : 200-203, 221.
|
[2] |
Xiao Baoqing, Qu Jingkui.Synthesis and interfacial properties of alkylbenzene sulfonates for flooding[G]//Institute of Electrical and Electronics Engineers. 2010 International Conference on Mechanic Automation and Control Engineering. Wuhan: Institute of Electrical and Electronics Engineers, 2010: 1701-1705.
|
[3] |
Niu R X, He J Y, Long B, et al. Adsorption, wetting, foaming, and emulsification properties of mixtures of nonylphenol dodecyl sulfonate based on linear alpha-olefin and heavy alkyl benzene sulfonate[J]. Journal of Dispersion Science and Technology, 2018, 39 (8) : 1108-1114.
|
[4] |
Li G, Zhou Z, Fan J, et al. Study on microscopic oil displacement mechanism of alkaline-surfactant-polymer ternary flooding[J]. Materials, 2024.
|
[5] |
Liu B, Hou J, Tang H, et al. Experimental study of the effect of strong alkali on lowering the interfacial tension of oil/heavy alkylbenzene sulfonates system[J]. Chinese Journal of Chemistry, 2011, 29 (11) : 2315-2319.
|
[6] |
王伟, 岳湘安, 张立娟, 等. 超低界面张力石油磺酸盐复配驱油剂研究[J]. 日用化学工业, 2011, 41 (5) : 334-337.
|
[7] |
Luan H, Zhou Z, Xu C, et al. Study on the synergistic effects between petroleum sulfonate and a nonionic-anionic surfactant for enhanced oil recovery[J]. Energies, 2022, 15 (3) : 1177.
|
[8] |
Zhao Y, Xu Z, Li Z, et al. Synthesis and interfacial tension behavior of heavy alkyl benzene sulfonates[J]. Petroleum Science and Technology, 2006, 24 (7) : 821-827.
|
[9] |
Li X, Yue X A, Wang Z, et al. Role of emulsification and interfacial tension of a surfactant for oil film displacement[J]. Energy & Fuels, 2021, 35 (4) : 3032-3041.
|
[10] |
Mahboob A, Kalam S, Kamal M S, et al. EOR Perspective of microemulsions: A review[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109312.
|
[11] |
Zhao H, Kang W, Yang H, et al. Emulsification and stabilization mechanism of crude oil emulsion by surfactant synergistic amphiphilic polymer system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609: 125726.
|
[12] |
Sun Q, Zhou Z H, Han L, et al. How to regulate the migration ability of emulsions in micro-scale pores: droplet size or membrane strength?[J]. Molecules, 2023, 28 (4) : 1672.
|
[13] |
Marquez R, Ontiveros J F, Barrios N, et al. Advantages and limitations of different methods to determine the optimum formulation in surfactant-oil-water systems: a review[J]. Journal of Surfactants and Detergents, 2024, 27 (1) : 5-36.
|
[14] |
张磊, 宫清涛, 周朝辉, 等. 旋转滴方法测量界面扩张流变性质[J]. 物理化学学报, 2009, 25 (1) : 41-46.
|
[15] |
Alvarado J G, Bullón J, Salazar-Rodríguez F, et al. n-C7 Asphaltenes characterization as surfactants and polar oil from the HLDN model perspective[J]. Industrial & Engineering Chemistry Research, 2023, 62 (30) : 11872-11884.
|
[16] |
Marquez R, Antón R, Vejar F, et al. New interfacial rheology characteristics measured using a spinning drop rheometer at the optimum formulation. Part 2. Surfactant-oil-water systems with a high volume of middle-phase microemulsion[J]. Journal of Surfactants and Detergents, 2019, 22 (2) : 177-188.
doi: 10.1002/jsde.12245
|
[17] |
Marquez R, Acevedo N, Rondón M, et al. Breaking of water-in-crude oil emulsions. 10. Experimental evidence from a quartz crystal resonator sensor and an oscillating spinning drop interfacial rheometer[J]. Energy & Fuels, 2023, 37 (4) : 2735-2749.
|
[18] |
Ma G, Gong Q, Xu Z, et al. The interfacial dilational rheology of surfactant solutions with low interfacial tension[J]. Molecules, 2025, 30 (3) : 447.
|
[19] |
Zhang L, Luo L, Zhao S, et al. Studies of synergism/antagonism for lowering dynamic interfacial tensions in surfactant/alkali/acidic oil systems. Part 1: synergism/antagonism in surfactant/model oil systems[J]. Journal of Colloid and Interface Science, 2002, 249 (1) : 187-193.
pmid: 16290585
|
[20] |
Gao S T. Generation of low interfacial tension and determination of the EACN of Daqing crude oil[J]. Oilfield Chemistry, 1985, 2 (2) : 96-102.
|
[21] |
Sun H Q, Guo Z Y, Cao X L, et al. Interfacial interactions between oleic acid and betaine molecules at decane-water interface: a study of dilational rheology[J]. Journal of Molecular Liquids, 2020, 316: 113784.
|
[22] |
Jiang Q, Zhu Y W, Liu Y, et al. Studies on interfacial interactions between extended surfactant and betaine by dilational rheology[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 710: 136245.
|
[23] |
Liu K X, Yin H J, Zhang L, et al. Effect of EO group on the interfacial dilational rheology of fatty acid methyl ester solutions[J]. Colloids and Surfaces A, 2018, 553: 11-19.
|
[24] |
Liu K X, Yin H J, Zhang L, et al. Interfacial dilational rheology of fatty acid methyl ester and alkyl benzene sulfonate mixed solutions[J]. Journal of Molecular Liquids, 2018, 269: 335-343.
|
[25] |
Xin X, Zhang H, Xu G, et al. Influence of CTAB and SDS on the properties of oil-in-water nano-emulsion with paraffin and Span 20/Tween 20[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418: 60-67.
|
[26] |
Chen Z, Zhang P, Sun Y, et al. Interfacial dilational rheology of sodium lauryl glycine and mixtures with conventional surfactants[J]. Journal of Surfactants and Detergents, 2019, 22 (6) : 1477-1485.
|
[27] |
Marquez R, Bullon J, Forgiarini A, et al. The oscillatory spinning drop technique. An innovative method to measure dilational interfacial rheological properties of brine-crude oil systems in the presence of asphaltenes[J]. Colloids and Interfaces, 2021, 5 (3) : 42.
|
[28] |
Marquez R, Meza L, Alvarado J G, et al. Interfacial rheology measured with a spinning drop interfacial rheometer: particularities in more realistic surfactant-oil-water systems close to optimum formulation at HLD= 0[J]. Journal of Surfactants and Detergents, 2021, 24 (4) : 587-601.
doi: 10.1002/jsde.12502
|
[29] |
Marquez R, Forgiarini A M, Langevin D, et al. Breaking of water-in-crude oil emulsions. Part 9. New interfacial rheology characteristics measured using a spinning drop rheometer at optimum formulation[J]. Energy & Fuels, 2019, 33 (9) : 8151-8164.
|
[30] |
Zamora J M, Marquez R, Forgiarini A M, et al. Interfacial rheology of low interfacial tension systems using a new oscillating spinning drop method[J]. Journal of Colloid and Interface Science, 2018, 519: 27-37.
doi: S0021-9797(18)30155-3
pmid: 29477897
|
[31] |
Marquez R, Forgiarini A M, Fernández J, et al. New interfacial rheology characteristics measured using a spinning-drop rheometer at the optimum formulation of a simple surfactant-oil-water system[J]. Journal of Surfactants and Detergents, 2018, 21 (5) : 611-623.
|
[32] |
Marquez R, Forgiarini A M, Langevin D, et al. Instability of emulsions made with surfactant-oil-water systems at optimum formulation with ultralow interfacial tension[J]. Langmuir, 2018, 34 (31) : 9252-9263.
doi: 10.1021/acs.langmuir.8b01376
pmid: 29986590
|