日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (12): 1497-1503.doi: 10.3969/j.issn.2097-2806.2024.12.012
收稿日期:
2024-02-03
修回日期:
2024-12-04
出版日期:
2024-12-22
发布日期:
2024-12-25
基金资助:
Yanwei Zhang1,Zhongliang Xu1,Xi Du2,Zhen Li1,Zhipeng Tian2,*()
Received:
2024-02-03
Revised:
2024-12-04
Online:
2024-12-22
Published:
2024-12-25
Contact:
* E-mail: 摘要:
随着消费者科学护肤意识的不断提高,以皮肤问题为导向的功效护肤和精准护肤方式成为化妆品重要的发展趋势。糖胺聚糖是由重复双糖单元组成的长链、线性多糖,在皮肤中进行高水平内源表达,普遍存在于皮肤细胞内、细胞表面和细胞外基质中,具有复杂的生物结构和多效生物活性。除透明质酸外,硫酸化的肝素、硫酸乙酰肝素、硫酸皮肤素和硫酸软骨素在抗皱、紧致、舒缓和改善微血管循环方面发挥着重要作用,但目前还未在化妆品领域得到广泛的应用。文章综述了硫酸化糖胺聚糖的护肤作用机理,展示了硫酸化糖胺聚糖作为功效成分在化妆品领域的应用潜力。
中图分类号:
张彦位, 许忠良, 杜曦, 李振, 田志鹏. 硫酸化糖胺聚糖护肤功效研究进展[J]. 日用化学工业(中英文), 2024, 54(12): 1497-1503.
Yanwei Zhang, Zhongliang Xu, Xi Du, Zhen Li, Zhipeng Tian. Research progress on the skincare efficacy of sulfated glycosaminoglycans[J]. China Surfactant Detergent & Cosmetics, 2024, 54(12): 1497-1503.
[1] | Gravitz L. Skin[J]. Nature, 2018, 563 (7732) : S83. |
[2] | Dong Chailing. The global new ingredients of cosmetics raw material and performance skin care[J]. China Cosmetics Review, 2023, 4: 62-64. |
[3] |
Anderegg U, Halfter N, Schnabelrauch M, et al. Collagen/glycosaminoglycan-based matrices for controlling skin cell responses[J]. Biological Chemistry, 2021, 402 (11) : 1325-1335.
doi: 10.1515/hsz-2021-0176 pmid: 34218546 |
[4] | Belvedere R, Bizzarro V, Parente L, et al. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts[J]. Cell Adhesion & Migration, 2018, 12 (2) : 168-183. |
[5] | Vallet S D, Berthollier C, Ricard-Blum S. The glycosaminoglycan interactome 2.0[J]. American Journal of Physiology Cell Physiology, 2022, 322 (6) : C1271-C1278. |
[6] | Pongener I, O’shea C, Wootton H, et al. Developments in the chemical synthesis of heparin and heparan sulfate[J]. Chemical Record (New York, N.Y.), 2021, 21 (11) : 3238-3255. |
[7] | Persson A, Nikpour M, Vorontsov E, et al. Domain mapping of chondroitin/dermatan sulfate glycosaminoglycans enables structural characterization of proteoglycans[J]. Molecular & Cellular Proteomics: MCP, 2021, 20: 100074. |
[8] |
Caterson B, Melrose J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability[J]. Glycobiology, 2018, 28 (4) : 182-206.
doi: 10.1093/glycob/cwy003 pmid: 29340594 |
[9] |
Handel T M, Johnson Z, Crown S E, et al. Regulation of protein function by glycosaminoglycans-as exemplified by chemokines[J]. Annual Review of Biochemistry, 2005, 74: 385-410.
pmid: 15952892 |
[10] | Malmström A, Bartolini B, Thelin M A, et al. Iduronic acid in chondroitin/dermatan sulfate: biosynthesis and biological function[J]. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 2012, 60 (12) : 916-925. |
[11] |
Lee D H, Oh J H, Chung J H. Glycosaminoglycan and proteoglycan in skin aging[J]. Journal of Dermatological Science, 2016, 83 (3) : 174-181.
doi: 10.1016/j.jdermsci.2016.05.016 pmid: 27378089 |
[12] | Maiti G, Ashworth S, Choi T, et al. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms[J]. Matrix Biology: Journal of the International Society for Matrix Biology, 2023, 123: 48-58. |
[13] |
Gopal S. Syndecans in inflammation at a glance[J]. Frontiers in Immunology, 2020, 11: 227.
doi: 10.3389/fimmu.2020.00227 pmid: 32133006 |
[14] |
Schaefer L, Schaefer R M. Proteoglycans: from structural compounds to signaling molecules[J]. Cell and Tissue Research, 2010, 339 (1) : 237-246.
doi: 10.1007/s00441-009-0821-y pmid: 19513755 |
[15] |
Wang S T, Neo B H, Betts R J. Glycosaminoglycans: sweet as sugar targets for topical skin anti-aging[J]. Clinical, Cosmetic and Investigational Dermatology, 2021, 14: 1227-1246.
doi: 10.2147/CCID.S328671 pmid: 34548803 |
[16] |
Nikitovic D, Katonis P, Tsatsakis A, et al. Lumican, a small leucine-rich proteoglycan[J]. Iubmb Life, 2008, 60 (12) : 818-823.
doi: 10.1002/iub.131 pmid: 18949819 |
[17] | Lee H, Lim J, Oh J H, et al. IGF-1 upregulates biglycan and decorin by increasing translation and reducing ADAMTS5 expression[J]. International Journal of Molecular Sciences, 2021, 22 (3) : 1403. |
[18] | Islam S, Watanabe H. Versican: A dynamic regulator of the extracellular matrix[J]. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 2020, 68 (11) : 763-775. |
[19] | Dos Santos M, Michopoulou A, André-Frei V, et al. Perlecan expression influences the keratin 15-positive cell population fate in the epidermis of aging skin[J]. Aging, 2016, 8 (4) : 751-768. |
[20] | Rorteau J, Chevalier F P, Fromy B, et al. Functional integrity of aging skin, from cutaneous biology to anti-aging strategies[J]. Medecine Sciences, 2020, 36 (12) : 1155-1162. |
[21] | Daquinag A C, Gao Z, Fussell C, et al. Glycosaminoglycan modification of decorin depends on MMP14 activity and regulates collagen assembly[J]. Cells, 2020, 9 (12) : 2646. |
[22] |
Nomura Y. Structural change in decorin with skin aging[J]. Connective Tissue Research, 2006, 47 (5) : 249-255.
pmid: 17118746 |
[23] |
Bucay V, Gold M H. Low molecular weight heparan sulfate containing facial skin care for reducing inflammation and restoring aged-skin homeostasis[J]. Journal of Cosmetic Dermatology, 2020, 19 (8) : 1851-1856.
doi: 10.1111/jocd.13528 pmid: 32562303 |
[24] |
Raikou V, Varvaresou A, Panderi I, et al. The efficacy study of the combination of tripeptide-10-citrulline and acetyl hexapeptide-3. A prospective, randomized controlled study[J]. Journal of Cosmetic Dermatology, 2017, 16 (2) : 271-278.
doi: 10.1111/jocd.12314 pmid: 28150423 |
[25] | Roig-Rosello E, Rousselle P. The human epidermal basement membrane: a shaped and cell instructive platform that aging slowly alters[J]. Biomolecules, 2020, 10 (12) : 1607. |
[26] | Wen S, Wu J, Ye L, et al. Topical applications of a heparinoid-containing product attenuate glucocorticoid-induced alterations in epidermal permeability barrier in mice[J]. Skin Pharmacology and Physiology, 2021, 34 (2) : 86-93. |
[27] |
Tsunenaga M. Heparanase inhibitors facilitate the assembly of the basement membrane in artificial skin[J]. Current Tissue Engineering, 2016, 5 (2) : 113-122.
pmid: 27853671 |
[28] | Koffi Teki D S, Coulibaly B, Bil A, et al. Synthesis of novel S- and O-disaccharide analogs of heparan sulfate for heparanase inhibition[J]. Organic & Biomolecular Chemistry, 2022, 20 (17) : 3528-3534. |
[29] |
Bucay V, Gold M H, Andriessen A. Low molecular weight heparan sulfate containing facial skin care for reducing inflammation and restoring aged-skin homeostasis[J]. Journal of Cosmetic Dermatology, 2020, 19 (8) : 1851-1856.
doi: 10.1111/jocd.13528 pmid: 32562303 |
[30] |
Colvan L, Fleck T, Vega V L. Global periorbital skin rejuvenation by a topical eye cream containing low molecular weight heparan sulfate (LMW-HS) and a blend of naturally derived extracts[J]. Journal of Cosmetic Dermatology, 2019, 18 (2) : 530-538.
doi: 10.1111/jocd.12857 pmid: 30636356 |
[31] |
De Araújo R, Lôbo M, Trindade K, et al. Fibroblast growth factors: a controlling mechanism of skin aging[J]. Skin Pharmacology and Physiology, 2019, 32 (5) : 275-282.
doi: 10.1159/000501145 pmid: 31352445 |
[32] | Zhang F, Zheng L, Cheng S, et al. Comparison of the interactions of different growth factors and glycosaminoglycans[J]. Molecules (Basel, Switzerland), 2019, 24 (18) : 3360. |
[33] |
Bäsler K, Brandner J M. Tight junctions in skin inflammation[J]. Pflugers Archiv: European Journal of Physiology, 2017, 469 (1) : 3-14.
doi: 10.1007/s00424-016-1903-9 pmid: 27853878 |
[34] |
Crijns H, Vanheule V, Proost P. Targeting chemokine-glycosaminoglycan interactions to inhibit inflammation[J]. Frontiers in Immunology, 2020, 11: 483.
doi: 10.3389/fimmu.2020.00483 pmid: 32296423 |
[35] | Farrugia B L, Lord M S, Melrose J, et al. The role of heparan sulfate in inflammation, and the development of biomimetics as anti-inflammatory strategies[J]. The Journal of Histochemistry and Cytochemistry, 2018, 66 (4) : 321-336. |
[36] | George R, Gallo R L, Cohen J L, et al. Reduction of erythema in moderate-severe rosacea by a low molecular weight heparan sulfate analog (HSA)[J]. Journal of Drugs in Dermatology: JDD, 2023, 22 (6) : 546-553. |
[37] |
Gross A R, Theoharides T C. Chondroitin sulfate inhibits secretion of TNF and CXCL8 from human mast cells stimulated by IL-33[J]. Biofactors, 2019, 45 (1) : 49-61.
doi: 10.1002/biof.1464 pmid: 30521103 |
[38] |
Utsunomiya R, Dai X. Heparinoid suppresses Der p-induced IL-1β production by inhibiting ERK and p38 MAPK pathways in keratinocytes[J]. Experimental Dermatology, 2018, 27 (9) : 981-988.
doi: 10.1111/exd.13685 pmid: 29754454 |
[39] | Makino-Okamura C, Niki Y, Takeuchi S, et al. Heparin inhibits melanosome uptake and inflammatory response coupled with phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways in human epidermal keratinocytes[J]. Pigment Cell & Melanoma Research, 2014, 27 (6) : 1063-1074. |
[40] | Zdrada-Nowak J, Stolecka-Warzecha A. The assessment of moderate acne vulgaris face skin using blood perfusion and hyperspectral imaging: A pilot study[J]. Journal of Cosmetic Dermatology, 2023, 22 (11) : 3143-3151. |
[41] | Jiang W C, Zhang H, Xu Y, et al. Cutaneous vessel features of sensitive skin and its underlying functions[J]. Skin Research and Technology, 2020, 26 (3) : 431-437. |
[42] | He Li. The guide for topical use of skin lightening cosmetics in the treatment of melasma[J]. The Chinese Journal of Dermatovenereology, 2022, 36 (2) : 123-127. |
[43] | Chung J H, Eun H C. Angiogenesis in skin aging and photoaging[J]. The Journal of Dermatology, 2007, 34 (9) : 593-600. |
[44] |
Lee J H, Yoo J H, Oh S H, et al. Knockdown of moesin expression accelerates cellular senescence of human dermal microvascular endothelial cells[J]. Yonsei Medical Journal, 2010, 51 (3) : 438-447.
doi: 10.3349/ymj.2010.51.3.438 pmid: 20376899 |
[45] | Fei Wenmin, Tang Huayang, Yang Sen, et al. Changes of cutaneous microcirculatory in psoriasis[J]. The Chinese Journal of Dermatovenereology, 2018, 21 (6) : 714-717. |
[46] | Chiodelli P, Bugatti A, Urbinati C, et al. Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use[J]. Molecules (Basel, Switzerland), 2015, 20 (4) : 6342-6388. |
[47] |
Kuwahara-Watanabe K, Hidai C, Ikeda H, et al. Heparin regulates transcription of endothelin-1 gene in endothelial cells[J]. Journal of Vascular Research, 2005, 42 (3) : 183-189.
pmid: 15785094 |
[48] |
Denzinger M, Held M, Amr A, et al. The influence of topically administered heparin on peripheral microcirculation of the skin: a double-blind, randomized, controlled preliminary study on 50 healthy subjects[J]. Journal of Reconstructive Microsurgery, 2021, 37 (8) : 694-703.
doi: 10.1055/s-0041-1726028 pmid: 33792003 |
[49] | Foote C A, Soares R N, Ramirez-Perez F I, et al. Endothelial glycocalyx[J]. Comprehensive Physiology, 2022, 12 (4) : 3781-3811. |
[50] | Zhao Yaping. N-desulfated / acetylated heparin ameliorates the shedding of glycocalyx in septic mice[D]. Jinan: Shandong University, 2019. |
[51] | Huang Yueting, Pan Ye, Jiang Yujie, et al. Study of damage and protection of endodermal glycocalyx in rats with rear limb venous hypertension[J]. Chinese Journal of Vascular Surgery (Electronic Version), 2020, 12 (1) : 42-46. |
[1] | 赖梓漩, 宋雨轩, 段雪伟, 刘诗芸, 刘冰, 张敏君, 杨慧文. 构树花粗多糖对紫外线诱导小鼠皮肤光损伤的保护作用及机制研究[J]. 日用化学工业(中英文), 2024, 54(9): 1069-1077. |
[2] | 孙琳, 张曼. 白花泡桐叶片提取物的抗皮肤光老化作用研究[J]. 日用化学工业(中英文), 2024, 54(9): 1092-1098. |
[3] | 李生鹏, 李静, 梁超, 赵冉, 张晓洁, 孙丽丽. 丝素蛋白对皮肤光损伤的保护作用[J]. 日用化学工业(中英文), 2024, 54(9): 1117-1124. |
[4] | 袁旻嘉,李琦,朱翠翠,帖航. 壬二酸和壳多糖包被的壬二酸复合物的皮肤吸收效率及抗炎能力比较研究[J]. 日用化学工业(中英文), 2024, 54(8): 956-965. |
[5] | 蒋虹,姜姗姗,袁春颖,杨素珍,韩婷婷,李燕. 女性油性敏感皮肤面部生理参数与菌群特征分析[J]. 日用化学工业(中英文), 2024, 54(8): 966-973. |
[6] | 刘兆亿, 陈鑫宇, 王艳, 李雪, 郭若曦, 张晗. 氧化苦参碱对小鼠皮肤屏障功能障碍的修复作用研究[J]. 日用化学工业(中英文), 2024, 54(7): 777-783. |
[7] | 彭常梅, 冯洁, 姚天波, 张婉萍, 郑时莲. 唇部皮肤生理参数的多维度分析和研究[J]. 日用化学工业(中英文), 2024, 54(7): 803-811. |
[8] | 江月明, 鲁文嘉, 瞿欣. 檀香木提取物对皮肤嗅觉受体的影响及功效[J]. 日用化学工业(中英文), 2024, 54(7): 828-835. |
[9] | 邵冠儒, 张坤阳. 大黄酸通过抑制p38 MAPK磷酸化减轻UVB诱导的皮肤光老化损伤[J]. 日用化学工业(中英文), 2024, 54(7): 836-843. |
[10] | 王紫迪, 周城, 何华名, 焦倩, 苏芊芊, 贾焱. 洗发水表面活性剂对头皮的影响及其内在机制的研究进展[J]. 日用化学工业(中英文), 2024, 54(6): 733-743. |
[11] | 王丹, 俞舜, 王玉英, 李京玲, 刘晨阳, 吕国忠. 羟基积雪草苷通过激活Nrf2-HO-1通路发挥抗衰老及皮肤修复作用[J]. 日用化学工业(中英文), 2024, 54(6): 683-690. |
[12] | 刘慧, 杨思佳, 任晗堃, 曲召辉, 郑立波, 李姝静. 天然植物多糖的提取、分离及其在皮肤领域的研究进展[J]. 日用化学工业(中英文), 2024, 54(6): 708-717. |
[13] | 崔俭杰, 蔡安瑞, 赵祎玮. DPK法对离子导入技术促进护肤用活性成分在皮肤的吸收过程研究[J]. 日用化学工业(中英文), 2024, 54(5): 535-541. |
[14] | 张嘉琪, 吴凡, 韩雨晴, 刘琦, 王俊杰, 盘瑶. 多光子成像技术及其在化妆品评估中的应用[J]. 日用化学工业(中英文), 2024, 54(5): 605-613. |
[15] | 韩耕涛, 董卓, 姚韧辉. 芝麻林素对皮肤光老化小鼠AQP3表达和Nrf2信号通路活化的影响[J]. 日用化学工业(中英文), 2024, 54(4): 431-438. |
|