日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (5): 581-587.doi: 10.3969/j.issn.2097-2806.2024.05.012
收稿日期:
2023-06-18
修回日期:
2024-05-06
出版日期:
2024-05-22
发布日期:
2024-05-21
基金资助:
Xuzhao Yang*(),Kangkang Yuan,Longhuan Wu,Caiqi Niu,Yingying Zhang,Yakun Li,Jun Wang
Received:
2023-06-18
Revised:
2024-05-06
Online:
2024-05-22
Published:
2024-05-21
Contact:
*E-mail: 摘要:
金属有机骨架材料(Metal-Organic Frameworks,MOFs)具有比表面积大、孔径可调、性能可控等突出优点,在气体存储、吸附与分离、催化反应、传感等领域中有广泛的应用前景。表面活性剂在MOFs材料制备中,可以控制晶体的尺寸、孔径和几何形状,还可以限制纳米晶体的纵向生长,促进2D结构的形成,且制备出的MOFs材料结构稳定、不易坍塌。综述了常规表面活性剂和双子表面活性剂、离子液体表面活性剂等特种表面活性剂在MOFs材料制备中的应用,如用作模板剂、封端剂等。对表面活性剂在实现多级孔MOFs形貌和孔隙率的精确控制、特种表面活性剂及应用等进行了展望,为表面活性剂在MOFs材料制备中的应用指明了方向,也为MOFs材料的制备提供了更加丰富的路径。
中图分类号:
杨许召, 袁康康, 吴龙焕, 牛彩奇, 张盈盈, 李亚坤, 王军. 表面活性剂在MOFs材料制备中的应用[J]. 日用化学工业(中英文), 2024, 54(5): 581-587.
Xuzhao Yang, Kangkang Yuan, Longhuan Wu, Caiqi Niu, Yingying Zhang, Yakun Li, Jun Wang. Application of surfactants in the preparation of MOFs[J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 581-587.
[1] | Hong D H, Shim H S, Ha J, et al. MOF-on-MOF architectures: Applications in separation, catalysis, and sensing[J]. Bulletin of the Korean Chemical Society, 2021, 42 (7) : 956-969. |
[2] | Jiao C, Hu M, Hu T, et al. Enhanced proton conductivity and overall water splitting efficiency of dye@MOF by post-modification of MOF[J]. Journal of Solid State Chemistry, 2023, 322: 123978. |
[3] |
Tajahmadi S, Shamloo A, Shojaei A, et al. Adsorption behavior of a Gd-based metal-organic framework toward the quercetin drug: Effect of the activation condition[J]. ACS Omega, 2022, 7: 41177-41188.
doi: 10.1021/acsomega.2c04800 pmid: 36406538 |
[4] |
Casaban J, Zhang Y, Pacheco R, et al. Towards MOFs’ mass market adoption: MOF technologies’ efficient and versatile one-step extrusion of shaped MOFs directly from raw materials[J]. Faraday Discussions, 2021, 231: 312-325.
doi: 10.1039/d1fd00025j pmid: 34225354 |
[5] | Li H, Shi L, Li C, et al. Metal-organic framework based on alpha-cyclodextrin gives high ethylene gas adsorption capacity and storage stability[J]. ACS Applied Materials & Interfaces, 2020, 12 (30) : 34095-34104. |
[6] | Xue D X, Wang Q, Bai J. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties[J]. Coordination Chemistry Reviews, 2019, 378: 2-16. |
[7] | Liu Y, Liu M, Shang S, et al. Recrystallization of 2D C-MOF films for high-performance electrochemical sensors[J]. ACS Applied Materials & Interfaces, 2023, 15 (13) : 16991-16998. |
[8] |
Cai M, Qin L, You L, et al. Functionalization of MOF-5 with mono-substituents: effects on drug delivery behavior[J]. RSC Advances, 2020, 10 (60) : 36862-36872.
doi: 10.1039/d0ra06106a pmid: 35517920 |
[9] | Jiao Y, Hong W, Li P, et al. Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor[J]. Applied Catalysis B—Environmental, 2019, 244: 732-739. |
[10] | Qian Y, Zhang F, Zhao S, et al. Recent progress of metal-organic framework-derived composites: Synthesis and their energy conversion applications[J]. Nano Energy, 2023, 111: 108415. |
[11] |
Ardila-Suarez C, Molina V D R, Alem H, et al. Synthesis of ordered microporous/macroporous MOF-808 through modulator-induced defect-formation, and surfactant self-assembly strategies[J]. Physical Chemistry Chemical Physics, 2020, 22 (22) : 12591-12604.
doi: 10.1039/d0cp00287a pmid: 32458952 |
[12] | Arul P, Huang S T, Mani V. Surfactant-induced morphological evolution of Cu(Ⅱ) metal organic frameworks: Applicable in picomolar quantification of bilirubin[J]. Applied Surface Science, 2021, 557: 149827. |
[13] | Ghodsi J, Rafati A A, Joghani R A. Highly efficient degradation of linear alkylbenzene sulfonate surfactant by MIL-53 (Fe) metal organic framework derived electro-fenton applicable in water treatments[J]. ChemistrySelect, 2021, 6 (33) : 8889-8898. |
[14] | Ma J, Bai W, Liu X, et al. Electrochemical dopamine sensor based on bi-metallic Co/Zn porphyrin metal-organic framework[J]. Microchimica Acta, 2022, 189: 20. |
[15] | Yuan Ye, Wang Ming, Zhou Yunqi, et al. Progress in pore size regulation of metal organic frameworks[J]. CIESC Journal, 2020, 71 (2) : 429-450. |
[16] | Jin Y, Qi Y, Tang C, et al. Hierarchical micro-and mesoporous metal-organic framework-based magnetic nanospheres for the nontargeted analysis of chemical hazards in vegetables[J]. Journal of Materials Chemistry A, 2021, 9 (14) : 9056-9065. |
[17] | Liu J, Yang J, An S, et al. Synthesis and electromagnetic properties of NH2-MIL-88B(Fe) crystals with morphology and size controllable through synergistic effects of surfactant and water[J]. Journal of Materials Science-Materials in Electronics, 2022, 33 (17) : 14228-14239. |
[18] | Yang P, Zhou R, Zhang Y, et al. Enhanced CO2/N2 separation performance in HP-Cu-BTCs by modifying the open-metal sites and porosity using added templates[J]. Korean Journal of Chemical Engineering, 2023, 40 (3) : 675-692. |
[19] | Qiu L G, Xu T, Li Z Q, et al. Hierarchically micro-and mesoporous metal-organic frameworks with tunable porosity[J]. Angewandte Chemie- International Edition, 2008, 47 (49) : 9487-9491. |
[20] | Chen Hangrong, Shi Jianlin, Yujian, et al. Synthesis and application of ordered mesoporous materials composed of non silicon[J]. Journal of the Chinese Ceramic Society, 2000, 3 (13) : 259-263. |
[21] | Huo Q, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J]. Chemistry of Materials, 1994, 6 (8) : 1176-1191. |
[22] | Mehdi A, Sadat A S, Reza H, et al. Hierarchical mesoporous zinc-imidazole dicarboxylic acid MOFs: Surfactant-directed synthesis, pH-responsive degradation, and drug delivery[J]. International Journal of Pharmaceutics, 2021, 602: 120685. |
[23] | Gao X, Cui R, Zhang M, et al. Metal-organic framework nanosheets that exhibit pH-controlled drug release[J]. Materials Letters, 2017, 197: 217-220. |
[24] | Li K, Lin S, Li Y, et al. Aqueous-phase synthesis of mesoporous Zr-based MOFs templated by amphoteric surfactants[J]. Angewandte Chemie-International Edition, 2018, 57 (13) : 3439-3443. |
[25] | Li H, Meng F, Zhang S, et al. Crystal-growth-dominated fabrication of metal-organic frameworks with orderly distributed hierarchical porosity[J]. Angewandte Chemie-International Edition, 2020, 59 (6) : 2457-2464. |
[26] | Li K, Yang J, Huang R, et al. Ordered large-pore mesoMOFs based on synergistic effects of triblock polymer and hofmeister ion[J]. Angewandte Chemie-International Edition, 2020, 59 (33) : 14124-14128. |
[27] | Chen J, Li K, Yang J, et al. Bimetallic ordered large-pore mesoMOFs for simultaneous enrichment and dephosphorylation of phosphopeptides[J]. ACS Applied Materials & Interfaces, 2021, 13 (50) : 60173-60181. |
[28] | Jomekian A, Bazooyar B, Behbahani R M. ZIF-8 modified by pluronic P123 copolymer with enlarged pores and enhanced textural properties for CO2/CH4 and CO2/N2 separations[J]. Journal of Solid State Chemistry, 2020, 289: 121532. |
[29] | Khan S, Gbadamosi A, Norrman K, et al. Adsorption study of novel Gemini cationic surfactant in carbonate reservoir cores-influence of critical parameters[J]. Materials, 2022, 15 (7) : 2527. |
[30] | Li Z, Li L, Sun X, et al. Research on the synthesis and application of aminosulfonic acid Gemini surfactant[J]. Materia-Rio De Janeiro, 2022, 27 (3) : e20220075. |
[31] | Fluegel E A, Aronson M T, Junggeburth S C, et al. Surfactant-directed syntheses of mesostructured zinc imidazolates: formation mechanism and structural insights[J]. Crystengcomm, 2015, 17 (2) : 463-470. |
[32] | Rani P, Srivastava R. Exploring the dicationic Gemini surfactant for the generation of mesopores: A step towards the construction of a hierarchical metal-organic framework[J]. Inorganic Chemistry Frontiers, 2018, 5 (11) : 2856-2867. |
[33] | Ghosh R, Alagarsamy T. Synthesis of hierarchically porous HKUST-1 MOF: Use of C14-6-14, a cationic Gemini surfactant, as soft-template(dagger)[J]. ChemistrySelect, 2020, 5 (21) : 6453-6469. |
[34] | Ghosh R, Sunny B, Babu M, et al. Role of crystal nucleation and growth conditions on the soft-templated preparation of HKUST-1 MOFs with hierarchical porosity involving Gemini surfactants[J]. Microporous and Mesoporous Materials, 2022, 334: 111758. |
[35] | Javaherian M, Saghanezhad S J. Synthesis, characterization and applications of dicationic ionic liquids in organic synthesis[J]. Mini-Reviews in Organic Chemistry, 2020, 17 (4) : 450-464. |
[36] | Wolny A, Chrobok A. Silica-based supported ionic liquid-like phases as heterogeneous catalysts[J]. Molecules, 2022, 27 (18) : 5900. |
[37] | Yang Xuzhao, Zhang Yingying, Zou Wenyuan, et al. Synthesis and application of ionic liquid surfactants (Ⅻ): Micro emulsion[J]. China Surfactant Detergent & Cosmetics, 2017, 47 (12) : 668-672, 688. |
[38] | Wang T X, Chen S R, Wang T, et al. PES mixed-matrix ultrafiltration membranes incorporating ZIF-8 and poly (ionic liquid) by microemulsion synthetic with flux and antifouling properties[J]. Applied Surface Science, 2022, 576: 151815. |
[39] | Tang J, Liang Z, Huang M, et al. A combined bottom-up and top-down strategy to fabricate lanthanide hydrate@2D MOF composite nanosheets for direct white light emission[J]. Journal of Materials Chemistry C, 2021, 9 (41) : 14628-14636. |
[40] | Liu L, Lu X Y, Zhang M L, et al. 2D MOF nanosheets as an artificial light-harvesting system with enhanced photoelectric switching performance[J]. Inorganic Chemistry Frontiers, 2022, 9 (11) : 2676-2682. |
[41] | Shi C, Duyar M S, Wang X, et al. Design of two-dimensional metal-organic framework nanosheets for emerging applications[J]. FlatChem, 2021, 29: 2911. |
[42] | Wang Q, Sun J, Wei D. Two-dimensional metal-organic frameworks and covalent organic frameworks[J]. Chinese Journal of Chemistry, 2022, 40 (11) : 1359-1385. |
[43] | Lv Luqian, Zhao Yali, Wei Yanying, et al. Preparation of two-dimensional metal organic framework membrane and its application in separation[J]. Acta Chimica Sinica, 2021, 79 (7) : 869-884. |
[44] |
Zhao M, Wang Y, Ma Q, et al. Ultrathin 2D metal-organic framework nanosheets[J]. Advanced Materials, 2015, 27 (45) : 7372-7378.
doi: 10.1002/adma.201503648 |
[45] |
Wan Yue, Song Meina, Zhao Meiting. Synthesis of two-dimensional metal organic framework nanosheets and their applications in supercapacitors and electrocatalysts[J]. Chemical Journal of Chinese Universities, 2021, 42 (2) : 575-594.
doi: 10.7503/cjcu20200653 |
[46] | Zuo Q, Liu T, Chen C, et al. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution[J]. Angewandte Chemie-International Edition, 2019, 58 (30) : 10198-10203. |
[47] | Abdelhamid H N. Surfactant assisted synthesis of hierarchical porous metal-organic frameworks nanosheets[J]. Nanotechnology, 2019, 30 (43) : 435601. |
[48] | Zhang X, Zhang P, Chen C, et al. Fabrication of 2D metal-organic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis[J]. Green Chemistry, 2019, 21 (1) : 54-58. |
[1] | 刘子龙, 黑艳晓, 石迪, 肖宇飞, 李雪. 驱油用表面活性剂及其吸附特性的研究进展[J]. 日用化学工业(中英文), 2024, 54(4): 457-466. |
[2] | 何一凡, 吴文海, 苏牧楠, 蒋晓龙, 刘宇红. 拉曼光谱研究表面活性剂对皮肤刺激和皮肤防护的体内分子机制[J]. 日用化学工业(中英文), 2024, 54(4): 401-409. |
[3] | 张志升, 沈产量, 李建勋, 刘延强, 韩薇薇, 董三宝. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[4] | 李国峰, 刘凯楠, 莫文龙, 马腾. 页岩油藏渗吸驱油剂体系性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 250-258. |
[5] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[6] | 张红梅, 张永民. [芥酰胺苯甲酸][胆碱]离子液体表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 149-155. |
[7] | 杲款款, 杨素珍, 韩婷婷, 李燕, 袁春颖, 毛欣宇. 王浆酸及其护肤功效的研究进展[J]. 日用化学工业(中英文), 2024, 54(2): 209-215. |
[8] | 刘佩, 潘婷, 裴晓梅, 宋冰蕾, 蒋建中, 崔正刚, Bernard P. Binks. 非离子-阴离子Bola型表面活性剂和纳米SiO2颗粒协同稳定的双重响应型O/W乳状液[J]. 日用化学工业(中英文), 2024, 54(1): 1-15. |
[9] | 艾浩康, 姜亚洁, 王亚魁, 张璐, 耿涛. 硬脂酸酯双子季铵盐的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(1): 16-23. |
[10] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
[11] | 常世腾, 蔡小军, 郑延成, 刘雪瑾, 易晓, 蒋筑阳. 琥珀酸酯磺酸盐物化特性及其与甜菜碱复配体系界面性能[J]. 日用化学工业(中英文), 2023, 53(9): 989-998. |
[12] | 孙锦月, 何聪芬. 网络药理学研究现状及在化妆品领域应用展望[J]. 日用化学工业(中英文), 2023, 53(9): 1087-1093. |
[13] | 熊洁, 杨丹, 孟宏, 何一凡, 裴晓静. 阿魏酸皮肤生理作用及其化妆品包载技术研究进展[J]. 日用化学工业(中英文), 2023, 53(9): 1073-1079. |
[14] | 牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924. |
[15] | 王佳锐,魏孝承,张春雪,陈昢圳,郑向群,王强. 水环境样品中表面活性剂检测方法研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 925-934. |
|