日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (2): 210-219.doi: 10.3969/j.issn.1001-1803.2023.02.012
收稿日期:
2022-03-11
修回日期:
2023-01-31
出版日期:
2023-02-22
发布日期:
2023-02-23
通讯作者:
盛永刚
基金资助:
Received:
2022-03-11
Revised:
2023-01-31
Online:
2023-02-22
Published:
2023-02-23
Contact:
Yonggang Sheng
摘要:
抗反射涂层(减反膜)在军事、日常生活、工业等各领域有广泛应用。特别是对高能激光系统(惯性约束核聚变至关重要的技术之一)有重要意义。文章分析了减反膜的光学原理,介绍了其常用制造材料二氧化硅(SiO2)的特性。论述了溶胶-凝胶法制备减反膜的原理及独特优点,描述溶胶-凝胶法镀制减反膜的过程,即通过反应制得SiO2前驱待镀膜溶胶,再经由浸涂、旋涂、喷涂与涂布等方式镀制减反膜。分析了前体溶胶中各种化学反应过程,及反应中各因素对SiO2材料和最终镀制减反膜的影响。最后叙述了溶胶-凝胶法制备减反膜的新进展,如向溶胶中加入添加剂、改造待镀膜材料以及与其他制备减反膜的方法联合改性等方法。这样制得的减反膜不仅增强了膜的光学性能还使之具有了如自清洁等功能。最后展望了其在光伏、LED照明与多种前沿技术领域的应用。
中图分类号:
井希明,盛永刚. 溶胶-凝胶法制备SiO2减反膜研究[J]. 日用化学工业(中英文), 2023, 53(2): 210-219.
Jing Ximing,Sheng Yonggang. Preparation of SiO2 antireflective coatings by sol-gel method[J]. China Surfactant Detergent & Cosmetics, 2023, 53(2): 210-219.
[1] |
Zou Caineng, He Dongbo, Jia Chengye, et al. Connotation and pathway of world energy transition and its significance for carbon neutral[J]. Acta Petrolei Sinica, 2021, 42 (2):233-247.
doi: 10.7623/syxb202102008 |
[2] |
Huang C, Li L. Magnetic confinement fusion: a brief review[J]. Frontiers in Energy, 2018, 12 (2):305-313.
doi: 10.1007/s11708-018-0539-1 |
[3] | Li Zhichao, Zhao Hang, Gong Tao, et al. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32 (9):56-69. |
[4] | Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: an overview[C]// SPIE. Optical Engineering at the Lawrence Livermore National Laboratory Ⅱ:The National Ignition Facility. USA: SPIE, 2004. |
[5] |
Sun X, Xu X, Song G, et al. Preparation of MgF2/SiO2 coating with broadband antireflective coating by using sol-gel combined with electron beam evaporation[J]. Optical Materials, 2020, 101: 109739.
doi: 10.1016/j.optmat.2020.109739 |
[6] | Xu Juan, Liu Yongsheng, Lei Wei, et al. Research progress of multifunctional antireflection coatings on solar cells[J]. Bulletin of the Chinese Ceramic Society, 2015, 34 (2):428-432. |
[7] |
Starke R, Schober G A H. Why history matters: Ab initio rederivation of Fresnel equations confirms microscopic theory of refractive index[J]. Optik, 2018, 157: 275-286.
doi: 10.1016/j.ijleo.2017.11.026 |
[8] | Zhang Jinzhong. Stokes’s treatment of reflection and its application[J]. Journal of Shandong University(Philosophy and Social Sciences), 1956 (2):71-77. |
[9] | Xu S H, Huang J Y, Fei G T, et al. Sol-Gel preparation of high transmittance of infrared antireflective coating for TeO2 crystals[J]. Infrared Physics & Technology, 2021, 118: 103881. |
[10] |
Hossain M I, Aïssa B, Samara A, et al. Hydrophilic antireflection and antidust silica coatings[J]. ACS Omega, 2021, 6 (8):5276-5286.
doi: 10.1021/acsomega.0c05405 pmid: 33681568 |
[11] |
Motamedi M, Warkiani M E, Taylor R A. Transparent surfaces inspired by nature[J]. Advanced Optical Materials, 2018, 6 (14):1800091.
doi: 10.1002/adom.201800091 |
[12] | Gallais L, Commandré M. Laser-induced damage thresholds of bulk and coating optical materials at 1 030 nm, 500 fs[J]. Applied Optics, 2014, 53 (4):A186-A196. |
[13] | Gu Y, Xia K, Wu D, et al. Technical characteristics and wear-resistant mechanism of nano coatings: a review[J]. Coatings (Basel), 2020, 10 (3):233. |
[14] |
Wang X, Shen J. A review of contamination-resistant antireflective sol-gel coatings[J]. Journal of Sol-Gel Science and Technology, 2012, 61 (1):206-212.
doi: 10.1007/s10971-011-2615-4 |
[15] |
Lobmann P. Sol-Gel processing of MgF2antireflective coatings[J]. Nanomaterials, 2018, 8 (5):295.
doi: 10.3390/nano8050295 |
[16] |
Tao C Y, Zou X S, Reddy K M, et al. A hydrophobic ultralow refractive-index silica coating towards double-layer broadband antireflective coating with exceptionally high vacuum stability and laser-induced damage threshold[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563: 340-349.
doi: 10.1016/j.colsurfa.2018.11.038 |
[17] | Li W C, Ma S S, Li S W, et al. The migration behaviors of biochar colloids in heterogeneous porous media[J]. Acta Scientiae Circumstantiae, 2021, 41 (7):2857-2867. |
[18] |
Wang Q, Wang J, Jiang S, et al. Recent progress in sol-gel method for designing and preparing metallic and alloy nanocrystals[J]. Acta Physico-Chimica Sinica, 2019, 35 (11):1186-1206.
doi: 10.3866/PKU.WHXB201902002 |
[19] | Liu Xianzhe, Zhang Xu, Tao Hong, et al. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method[J]. Acta Physica Sinica, 2020, 69 (22):248-263. |
[20] |
Hench L L, West J K. The sol-gel process[J]. Chemical Reviews, 1990, 90 (1):33-72.
doi: 10.1021/cr00099a003 |
[21] | Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Academic Press, 1968, 26 (1):62-69. |
[22] |
Vincent A, Babu S, Brinley E, et al. Role of catalyst on refractive index tunability of porous silica antireflective coatings by sol-gel technique[J]. The Journal of Physical Chemistry C, 2007, 111 (23):8291-8298.
doi: 10.1021/jp0700736 |
[23] |
Karmakar B, De G, Ganguli D. Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS[J]. Journal of Non-crystalline Solids, 2000, 272 (2):119-126.
doi: 10.1016/S0022-3093(00)00231-3 |
[24] |
Brinker C J. Hydrolysis and condensation of silicates: Effects on structure[J]. Journal of Non-Crystalline Solids, 1988, 100 (1-3):31-50.
doi: 10.1016/0022-3093(88)90005-1 |
[25] |
Erigoni A, Diaz U. Porous silica-based organic-inorganic hybrid catalysts: a review[J]. Catalysts, 2021, 11 (79):79.
doi: 10.3390/catal11010079 |
[26] |
Zhang Zhihui, He Junhui, Yang Qiaowen. Research progress in preparation of mechanically durable SiO2 antireflective coatings by acid catalyzed sol-gel process[J]. Imaging Science and Photochemistry, 2013, 31 (2):91-102.
doi: 10.7517/j.issn.1674-0475.2013.02.002 |
[27] |
Curley R, Holmes J D, Flynn E J. Can sustainable, monodisperse, spherical silica be produced from biomolecules? A review[J]. Applied Nanoscience, 2021, 11 (6):1777-1804.
doi: 10.1007/s13204-021-01869-6 |
[28] |
Trinh T T, Jansen A P J, van Santen R A. Mechanism of oligomerization reactions of silica[J]. The Journal of Physical Chemistry B, 2006, 110 (46):23099-23106.
doi: 10.1021/jp063670l |
[29] |
Yokoi T, Wakabayashi J, Otsuka Y, et al. Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids[J]. Chemistry of Materials, 2009, 21 (15):3719-3729.
doi: 10.1021/cm900993b |
[30] |
Winter R, Chan J B, Frattini R, et al. The effect of fluoride on the sol-gel process[J]. Journal of Non-Crystalline Solids, 1988, 105 (3):214-222.
doi: 10.1016/0022-3093(88)90310-9 |
[31] |
Xia B, Yan L, Li Y, et al. Preparation of silica coatings with continuously adjustable refractive indices and wettability properties via sol-gel method[J]. RSC Advances, 2018, 8 (11):6091-6098.
doi: 10.1039/C7RA12817G |
[32] | Gao W, Rigout M, Owens H. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals[J]. Journal of Nanoparticle Research: an Interdisciplinary Forum for Nanoscale Science and Technology, 2016, 18 (12):1-10. |
[33] |
Qi D, Lin C, Zhao H, et al. Size regulation and prediction of the SiO2 nanoparticles prepared via Stöber process[J]. Journal of Dispersion Science and Technology, 2017, 38 (1):70-74.
doi: 10.1080/01932691.2016.1143373 |
[34] |
Aziz F, Ismail A F. Spray coating methods for polymer solar cells fabrication: A review[J]. Materials Science in Semiconductor Processing, 2015, 39: 416-425.
doi: 10.1016/j.mssp.2015.05.019 |
[35] |
Falcony C, Aguilar-Frutis M A, García-Hipólito M. Spray pyrolysis technique; high-k dielectric films and luminescent materials: a review: micromachines[J]. Micromachines, 2018, 9 (8):144.
doi: 10.3390/mi9040144 |
[36] |
Mozumder M S, Mourad A I, Pervez H, et al. Recent developments in multifunctional coatings for solar panel applications: A review[J]. Solar Energy Materials and Solar Cells, 2019, 189: 75-102.
doi: 10.1016/j.solmat.2018.09.015 |
[37] | Shen Bin, Xiong Huai, Zhang Xu, et al. Porous silica antireflective film at ultraviolet laser wavelength (266 nm)[J]. Acta Optica Sinica, 2020, 40 (22):170-176. |
[38] | Qin Ruirui, Xu Wencai, Chen Bangshe, et al. Progress of coating technology[J]. Packaging Engineering, 2012, 33 (3):132-136. |
[39] |
Hu Yan, Wang Yuanhao, Yang Hongxing. TEOS/silane coupling agent composed double layers structure: A novel super-hydrophilic coating with controllable water contact angle value[J]. Applied Energy, 2017, 185: 2209-2216.
doi: 10.1016/j.apenergy.2015.09.097 |
[40] |
Zhang Y, Zhang X, Ye H, et al. A simple route to prepare crack-free thick antireflective silica coatings with improved antireflective stability[J]. Materials Letters, 2012, 69: 86-88.
doi: 10.1016/j.matlet.2011.11.043 |
[41] | Cai S, Zhang Y, Zhang H, et al. Sol-Gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6 (14):11470-11475. |
[42] |
Sun X, Li L, Xu X, et al. Preparation of hydrophobic SiO2/PTFE sol and antireflective coatings for solar glass cover[J]. Optik, 2020, 212: 164704.
doi: 10.1016/j.ijleo.2020.164704 |
[43] |
Zhang X L, Lu Q, Cheng Y, et al. Moth-eye-like antireflection coatings based on close-packed solid/hollow silica nanospheres[J]. Journal of Sol-Gel Science and Technology, 2019, 90 (2):330-338.
doi: 10.1007/s10971-018-04912-1 |
[44] |
Nakashima Y, Takai C, Razavi-Khosroshahi H, et al. Influence of the PAA concentration on PAA/NH3 emulsion template method for synthesizing hollow silica nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546: 301-306.
doi: 10.1016/j.colsurfa.2018.03.033 |
[45] |
Muraguchi R, Futagami W, Hakoshima Y, et al. Preparation and properties of organic-inorganic hybrid antireflection films made by a low-temperature process using hollow silica nanoparticles[J]. ACS Omega, 2021, 6 (12):8570-8577.
doi: 10.1021/acsomega.1c00386 pmid: 33817517 |
[46] |
Yuan Y, Lu X D, Yan G H, et al. Sol-gel preparation of antireflective coatings with abrasion resistance by base/acid double catalysis and surface treatment[J]. Solar Energy, 2017, 155: 1366-1372.
doi: 10.1016/j.solener.2017.08.003 |
[47] |
Wang X, Nshimiyimana J P, Huang D, et al. Durable superhydrophilic and antireflective coating for high-performance anti-dust photovoltaic systems[J]. Applied Nanoscience, 2021, 11 (3):875-885.
doi: 10.1007/s13204-020-01643-0 |
[48] |
Zhu Y, Chen L, Zhang C, et al. Preparation of hydrophobic antireflective SiO2 coating with deposition of PDMS from water-based SiO2-PEG sol[J]. Applied Surface Science, 2018, 457: 522-528.
doi: 10.1016/j.apsusc.2018.06.177 |
[49] |
Zhang S, Zhao X, Wang P, et al. Preparation of superhydrophilic silicate coating by sol-gel for double-wavelength broadband antireflective coatings[J]. Journal of Sol-Gel Science and Technology, 2019, 92 (3):598-606.
doi: 10.1007/s10971-019-05130-z |
[50] |
Mbam S O, Nwonu S E, Orelaja O A, et al. Thin-film coating; historical evolution, conventional deposition technologies, stress-state micro/nano-level measurement/models and prospects projection: a critical review[J]. Materials Research Express, 2019, 6 (12):122001.
doi: 10.1088/2053-1591/ab52cd |
[1] | 胡可云. Fe3O4基核壳纳米结构材料的制备及顺磁性研究[J]. 日用化学工业(中英文), 2024, 54(3): 298-304. |
[2] | 章贞阳, 何云阳. ZnO纳米颗粒的合成及盐酸四环素降解活性研究[J]. 日用化学工业(中英文), 2023, 53(7): 781-788. |
[3] | 李曦, Saule Aidarova, 殷夏, Miras Issakhov, 徐德荣, 康万利. 荧光纳米材料的研究进展[J]. 日用化学工业(中英文), 2023, 53(5): 551-559. |
[4] | 牛红博,燕永利,豆龙龙,姜选选,张晓,张佩亮. 微纳米SiO2颗粒的粒径调控技术研究进展[J]. 日用化学工业, 2022, 52(7): 770-777. |
[5] | 张亚如,刘冬,张云,陈昊,曹玉华. SiO2包覆TiO2复合纳米粒子的制备及防晒性能研究[J]. 日用化学工业, 2022, 52(1): 28-34. |
[6] | 宋海,张梦华,安鹏,武元鹏. 稠油流量监测涡轮表面超双疏涂层的构筑与性能研究[J]. 日用化学工业, 2021, 51(12): 1179-1185. |
[7] | 骆正哲,杨成. W/O/W型Pickering乳液的制备及稳定性研究[J]. 日用化学工业, 2019, 49(8): 508-514. |
[8] | 郅轲轲, 徐鲁, 张亚刚, 王璐璐, 艾克热木·牙生, 张乐涛. 溶胶-凝胶法制备鞣花酸表面分子印迹聚合物[J]. 日用化学工业, 2018, 48(12): 684-690. |
[9] | 侯屹婷, 关茹群, 郝雅娟, 杨恒权. “干浓硫酸”的制备与性质研究[J]. 日用化学工业, 2017, 47(5): 246-250. |
[10] | 刘玲玲, 陈志萍, 黄建萍, 郝雅娟, 杨恒权. 界面活性二氧化硅纳米球稳定气泡性能研究[J]. 日用化学工业, 2015, 45(2): 66-71. |
|