[1] |
Thuong N T, Dung T A, Yusof N H, et al. Controlling the size of silica nanoparticles in filler nanomatrix structure of natural rubber[J]. Polymer, 2020, 195: 122444.
doi: 10.1016/j.polymer.2020.122444
|
[2] |
Singh L P, Bhattacharyya S K, Kumar R, et al. Sol-Gel processing of silica nanoparticles and their applications[J]. Advances in Colloid and Interface Science, 2014, 214: 17-37.
doi: S0001-8686(14)00280-2
pmid: 25466691
|
[3] |
Guo Q, Huang D, Kou X, et al. Synthesis of disperse amorphous SiO2 nanoparticles via sol-gel process[J]. Ceramics International, 2017, 43 (1) : 192-196.
doi: 10.1016/j.ceramint.2016.09.133
|
[4] |
Du Hongyan, Qi Yufan, Wu Chenxue, et al. Preparation and optical properties of SiO2photonic crystal structure color films[J]. Journal of Materials Engineering, 2019, 47 (12) : 111-117.
|
[5] |
Zhu J, Liao L, Zhu L, et al. Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells[J]. Talanta, 2013, 107: 408-415.
doi: 10.1016/j.talanta.2013.01.037
|
[6] |
Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26 (1) : 62-69.
doi: 10.1016/0021-9797(68)90272-5
|
[7] |
Ghimire P P, Jaroniec M. Renaissance of Stöber method for synthesis of colloidal particles: New developments and opportunities[J]. Journal of Colloid and Interface Science, 2021, 584: 838-865.
doi: 10.1016/j.jcis.2020.10.014
|
[8] |
Han Y D, Lu Z Y, Teng Z G, et al. Unravelling the growth mechanism of silica particles in Stöber method: In-situ seeded growth model[J]. Langmuir, 2017, 33 (23) : 5879-5890.
doi: 10.1021/acs.langmuir.7b01140
|
[9] |
Cai H F, Jiang Y G, Li L G, et al. Preparation of monodispersed silica sol with small particle size, narrow size distribution, and high conversion[J]. Journal of Sol-Gel Science and Technology, 2019, 91 (1) : 44-53.
doi: 10.1007/s10971-019-05025-z
|
[10] |
Fernandes R S, Raimundo I M, Pimentel M F. Revising the synthesis of Stöber silica nanoparticles: A multivariate assessment study on the effects of reaction parameters on the particle size[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577: 1-7.
doi: 10.1016/j.colsurfa.2019.05.053
|
[11] |
Meier M, Ungerer J, Klinge M, et al. Synthesis of nanometric silica particles via a modified Stöber synthesis route[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 559-564.
doi: 10.1016/j.colsurfa.2017.11.047
|
[12] |
Li Xiying, Shi Bing, Li Mengmeng, et al, Preparation of silica nano-particles using small organic aminesasbasic catalysts[J]. Chemical Research, 2015, 26 (6) : 73-77.
|
[13] |
Yokoi T, Wakabayashi J, Otsuka Y, et al. Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids[J]. Chemistry of Materials, 2009, 21 (15) : 3719-3729.
doi: 10.1021/cm900993b
|
[14] |
Xia L J, Yao B B, Shi H, et al. Fundamental method for controlling monodisperse silica nanoparticles dimension assisted by lysine[J]. Journal of Sol-Gel Science and Technology, 2019, 92 (1) : 134-145.
doi: 10.1007/s10971-019-05087-z
|
[15] |
Hristov D R, Mahon E, Dawson K A. Controlling aqueous silica nanoparticle synthesis in the 10-100 nm range[J]. Chemical Communications, 2015, 51 (98) : 17420-17423.
doi: 10.1039/C5CC06598D
|
[16] |
Hartlen K D, Athanasopoulos A P T, Kitaev V. Facile preparation of highly monodisperse small silica spheres (15 to>200 nm) suitable for colloidal templating and formation of ordered arrays[J]. Langmuir, 2008, 24 (5) : 1714-1720.
doi: 10.1021/la7025285
pmid: 18225928
|
[17] |
Bari A H, Jundale R B, Kulkarni A A. Understanding the role of solvent properties on reaction kinetics for synthesis of silica nanoparticles[J]. Chemical Engineering Journal, 2020, 398: 1-10.
|
[18] |
González-Álvarez R J, Naranjo-Rodríguez I, Hernández-Artiga M P, et al. Experimental design applied to optimisation of silica nanoparticles size obtained by sonosynthesis[J]. Journal of Sol-Gel Science and Technology, 2016, 80 (2) : 378-388.
doi: 10.1007/s10971-016-4129-6
|
[19] |
Fei S, Zhang Y, Zhang J, et al. Continuous synthesis of monodisperse silica microspheres over 1 μm size[J]. Journal of Flow Chemistry, 2021, 11 (4) : 831-842.
doi: 10.1007/s41981-021-00157-2
|
[20] |
Ren G, Su H, Wang S. The combined method to synthesis silica nanoparticle by Stöber process[J]. Journal of Sol-Gel Science and Technology, 2020, 96 (1) : 108-120.
doi: 10.1007/s10971-020-05322-y
|
[21] |
Zárate‐Reyes J M, Flores‐Romero E, Cheang‐Wong J C. Systematic preparation of high‐quality colloidal silica particles by sol-gel synthesis using reagents at low temperature[J]. International Journal of Applied Glass Science, 2022, 13 (1) : 54-62.
doi: 10.1111/ijag.16108
|
[22] |
Zhang S, Li G L, Cong H L, et al. Size control of monodisperse silica particles by modified Stöber method[J]. Integrated Ferroelectrics, 2017, 178 (1) : 52-57.
doi: 10.1080/10584587.2017.1323548
|
[23] |
Finnie K S, Bartlett J R, Barbé C J A, et al. Formation of silica nanoparticles in microemulsions[J]. Langmuir, 2007, 23 (6) : 3017-3024.
pmid: 17300209
|
[24] |
Osseo-Asare K, Arriagada F J. Growth kinetics of nanosize silica in a nonionic water-in-oil microemulsion: a reverse micellar pseudophase reaction model[J]. Journal of Colloid and Interface Science, 1999, 218 (1) : 68-76.
pmid: 10489280
|
[25] |
Bao Mengru, Zhu Guiru, Wang Meng, et al, Progress preparation of monodispersed spherical nano-silica[J]. Materials Reports, 2011, 25 (2) : 135-139.
|
[26] |
He Xiaoxiao, Shi Bihua, Wang Kemin, Study of the preparation of size-controlled silica nanoparticles based on reverse microemulsion method[J]. Journal of Hunan University (Natural Sciences), 2010, 37 (4) : 62-66.
|
[27] |
Han Qun, Wu Lihua, Chen Jing, et al. Preparation of mono-disperse SiO2 nano-spheres by a non-ionic reverse micellar system[J]. Bulletin of the Chinese Ceramic Society, 2012, 31 (6) : 1432-1437.
|
[28] |
Osseo-Asare K, Arriagada F J. Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system[J]. Colloids and Surfaces, 1990, 50: 321-339.
doi: 10.1016/0166-6622(90)80273-7
|
[29] |
Lin C H, Chang J H, Yeh Y Q, et al. Formation of hollow silica nanospheres by reverse microemulsion[J]. Nanoscale, 2015, 7 (21) : 9614-9626.
doi: 10.1039/C5NR01395J
|
[30] |
Huang Danchun. Preparation and characterizations of amorphous SiO2 nanoparticles[D]. Lanzhou: Lanzhou University, 2017.
|
[31] |
Jaramillo N, Paucar C, García C. Influence of the reaction time and the Triton X-100/cyclohexane/methanol/H2O ratio on the morphology and size of silica nanoparticles synthesized via sol-gel assisted by reverse micelle microemulsion[J]. Journal of Materials Science, 2014, 49 (9) : 3400-3406.
doi: 10.1007/s10853-014-8049-y
|
[32] |
Scholz S, Althues H, Kaskel S. Growth of silica nanoparticles in methylmethacrylate-based water-in-oil microemulsions[J]. Colloid and Polymer Science, 2007, 285 (15) : 1645-1653.
doi: 10.1007/s00396-007-1736-3
|
[33] |
Jesionowski T. Preparation of colloidal silica from sodium metasilicate solution and sulphuric acid in emulsion medium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 190(1/2) : 153-165.
doi: 10.1016/S0927-7757(01)00675-6
|
[34] |
Quarch K, Kind M. Inorganic precipitated silica gel. Part 1: Gelation kinetics and gel properties[J]. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 2010, 33 (6) : 1034-1039.
|
[35] |
Zheng Jing, Lin Yinqin. Synthesis of ultrafine SiO2 by chemical precipitation method[J]. Bulletin of the Chinese Ceramic Society, 2016, 35 (9) : 2942-2949.
|
[36] |
Hu Yanwei, Cheng Gong, Li Haoran. Synthesis of SiO2 nanoparticles by chemical precipitation[J]. Ciesc Journal, 2016, 67 (1) : 379-383.
|
[37] |
Chapa-González C, Piñón-Urbina A L, García-Casillas P E. Synthesis of controlled-size silica nanoparticles from sodium metasilicate and the effect of the addition of PEG in the size distribution[J]. Materials, 2018, 11 (4) : 510-517.
doi: 10.3390/ma11040510
|
[38] |
Yang Changpi, Zhao Liqi, Cheng Miliang, et al. Optimization of process conditions for preparation nanosilicon doxides by precipitation method[J]. Chemical Engineering Design Communications, 2021, 47 (7) : 69-81.
|
[39] |
Yang G Q, Guo Q, Yang D S, et al. Disperse ultrafine amorphous SiO2 nanoparticles synthesized via precipitation and calcination[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 445-454.
doi: 10.1016/j.colsurfa.2019.02.041
|
[40] |
Zhou C J, Wang Y J, Du L, et al. Preparation of highly dispersed SiO2 nanoparticles using continuous gas-based impinging streams[J]. Chemical Engineering Journal, 2017, 327: 734-742.
doi: 10.1016/j.cej.2017.06.133
|
[41] |
Zhang T, Wang Y, Luo G, et al. Preparation of highly dispersed precipitated nanosilica in a membrane dispersion microreactor[J]. Chemical Engineering Journal, 2014, 258: 327-333.
doi: 10.1016/j.cej.2014.07.027
|