日用化学工业 ›› 2020, Vol. 50 ›› Issue (4): 269-274.doi: 10.3969/j.issn.1001-1803.2020.04.010
葛小会1,2,3,田旭旺1,2,3,黄承敢1,2,3,陶兴东1,2,3,吴敏1,2,3,鲁鹏1,2,3()
收稿日期:
2019-08-11
修回日期:
2020-03-25
出版日期:
2020-04-22
发布日期:
2020-04-24
通讯作者:
鲁鹏
作者简介:
葛小会(1995-),女,山东人,硕士研究生,电话:18877166292,E-mail:1012367190@qq.com。
基金资助:
GE Xiao-hui1,2,3,TIAN Xu-wang1,2,3,HUANG Cheng-gan1,2,3,TAO Xing-dong1,2,3,WU Min1,2,3,LU Peng1,2,3()
Received:
2019-08-11
Revised:
2020-03-25
Online:
2020-04-22
Published:
2020-04-24
Contact:
Peng LU
摘要:
概述了蛋白质基微粒稳定的Pickering 乳液制备方法及应用。通过总结植物源和动物源蛋白质以及复合微粒稳定Pickering乳液的制备方法及应用,为蛋白质基微粒稳定的Pickering乳液在更多领域应用提供参考。最后,对蛋白质基微粒稳定的Pickering乳液的发展前景进行展望。
中图分类号:
葛小会,田旭旺,黄承敢,陶兴东,吴敏,鲁鹏. 蛋白质基微粒在Pickering乳液制备中的应用研究[J]. 日用化学工业, 2020, 50(4): 269-274.
GE Xiao-hui,TIAN Xu-wang,HUANG Cheng-gan,TAO Xing-dong,WU Min,LU Peng. Study on the applications of protein-based particles in the preparation of Pickering emulsions[J]. China Surfactant Detergent & Cosmetics, 2020, 50(4): 269-274.
[1] |
Rebello S, Asok A, Mundayoor S , et al. Surfactants: toxicity, remediation and green surfactants[J]. Environmental Chemistry Letters, 2014,12(2) : 275-287.
doi: 10.1007/s10311-014-0466-2 |
[2] |
Yang Y, Wu C, Morrow W J W. Cell death induced by vaccine adjuvants containing surfactants[J]. Vaccine, 2004,22(11/12) : 1524-1536.
doi: 10.1016/j.vaccine.2003.08.048 pmid: 15063578 |
[3] |
Lam S, Velikov K P, Velev O D . Pickering stabilization of foams and emulsions with particles of biological origin[J]. Current Opinion in Colloid & Interface Science, 2014,19(5) : 490-500.
doi: 10.1021/acs.biomac.9b01384 pmid: 31714073 |
[4] | Binks B P, Horozove T S. Colloidal particles at liquid interfaces [M]. Cambridge: Cambridge University Press, 2006. |
[5] | McClements D J . Protein-stabilized emulsions[J]. Current Opinion in Colloid & Interface Science, 2004,9(5) : 305-313. |
[6] | Guo Mengya, Lu Peng, Wu Min . Application of zinc oxide nanoparticles in antibacterial food packaging materials[J]. Packaging Engineering, 2018,39(15) : 65-75. |
[7] |
Zhao S, Zhan B, Hu Y , et al. Dynamics of Pickering emulsions in the presence of an interfacial reaction: a simulation study[J]. Langmuir, 2016,32(49) : 12975-12985.
doi: 10.1021/acs.langmuir.6b03046 pmid: 27951708 |
[8] | Dickinson E . Food emulsions and foams: Stabilization by particles[J]. Current Opinion in Colloid & Interface Science, 2010 ( 15) : 40-49. |
[9] | Fu Wei . Study on Pickering emulsions stabilized by bacterial cellulose nanofibrils[D]. Tianjin: Tianjin University of Science & Technology, 2015. |
[10] |
Lagaly G, Reese M, Abend S . Smectites as colloidal stabilizers of emulsions: II. Rheological properties of smectite-laden emulsions[J]. Applied Clay Science, 1999,14(5/6) : 279-298.
doi: 10.1016/S0169-1317(99)00004-6 |
[11] | Liu Bin . Application of Pickering emulsion in drug microcapsules[D]. Beijing: Beijing University of Chemical Technology, 2017. |
[12] | Zhao Zhenguo, Wang Shun. Applied colloid & interface chemistry [M]. Second edition. Beijing: Chemical Industry Press, 2018. |
[13] |
Binks B P, Lumsdon S O . Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000,16(23) : 8622-8631.
doi: 10.1021/la000189s |
[14] | Huang Jing . Research and application of cellulose nanocrystaline-based Pickering emulsion[D]. Yangzhou: Yangzhou University, 2018. |
[15] |
Katepalli H, John V T, Tripathi A , et al. Microstructure and rheology of particle stabilized emulsions: Effects of particle shape and inter-particle interactions[J]. Journal of Colloid and Interface Science, 2017,485:11-17.
doi: 10.1016/j.jcis.2016.09.015 pmid: 27639169 |
[16] |
Mikulcová V, Bordes R, Minařík A , et al. Pickering oil-in-water emulsions stabilized by carboxylated cellulose nanocrystals: Effect of the pH[J]. Food Hydrocolloids, 2018,80:60-67.
doi: 10.1016/j.foodhyd.2018.01.034 |
[17] |
Taha A, Hu T, Zhang Z , et al. Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate[J]. Ultrasonics Sonochemistry, 2018,49:283-293.
doi: 10.1016/j.ultsonch.2018.08.020 pmid: 30172463 |
[18] |
Dickinson E . Hydrocolloids at interfaces and the influence on the properties of dispersed systems[J]. Food Hydrocolloids, 2003,17(1) : 25-39.
doi: 10.1016/S0268-005X(01)00120-5 |
[19] | Wu Ziling, Zhou Fuzhen, Yin Yan , et al. Fabrication and characterization of stable gliadin colloid particles stabilized Pickering emulsion by ultrasound[J]. Modern Food Science & Technology, 2018,34(7) : 123-127. |
[20] |
Chen M, Lu J, Liu F , et al. Study on the emulsifying stability and interfacial adsorption of pea proteins[J]. Food Hydrocolloids, 2019,88:247-255.
doi: 10.1016/j.foodhyd.2018.09.003 |
[21] |
Xu Y, Liu T, Tang C . Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin[J]. Food Hydrocolloids, 2019,88:21-30.
doi: 10.1016/j.foodhyd.2018.09.031 |
[22] |
Xu Y, Tang C, Liu T , et al. Ovalbumin as an outstanding Pickering nanostabilizer for high internal phase emulsions[J]. Journal of Agricultural and Food Chemistry, 2018,66(33) : 8795-8804.
doi: 10.1021/acs.jafc.8b02183 pmid: 30044922 |
[23] |
Trentin A, Güell C, López F , et al. Microfiltration membranes to produce BSA-stabilized O/W emulsions by premix membrane emulsification[J]. Journal of Membrane Science, 2010,356(1/2) : 22-32.
doi: 10.1016/j.memsci.2010.03.022 |
[24] |
Momen S, Salami M, Alavi F , et al. The techno-functional properties of camel whey protein compared to bovine whey protein for fabrication a model high protein emulsion[J]. LWT, 2019,101:543-550.
doi: 10.1016/j.lwt.2018.11.063 |
[25] |
Delahaije R J B M, Wierenga P A, van Nieuwenhuijzen N H , et al. Protein concentration and protein-exposed hydrophobicity as dominant parameters determining the flocculation of protein-stabilized oil-in-water emulsions[J]. Langmuir, 2013,29(37) : 11567-11574.
doi: 10.1021/la401314a pmid: 23859264 |
[26] |
Rutkevičius M, Allred S, Velev O D , et al. Stabilization of oil continuous emulsions with colloidal particles from water-insoluble plant proteins[J]. Food Hydrocolloids, 2018,82:89-95.
doi: 10.1016/j.foodhyd.2018.04.004 |
[27] | Kumar L R G, Anas K K, Tejpal S C , et al. Chitosan: whey protein isolate: an effective emulsifier for stabilization of squalene based emulsions[J]. Waste and Biomass Valorization, 2019. |
[28] |
Sarkar A, Zhang S, Murray B , et al. Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces[J]. Colloids and Surfaces B: Biointerfaces, 2017,158:137-146.
doi: 10.1016/j.colsurfb.2017.06.037 pmid: 28688363 |
[29] | Chang Jing . Stability analysis and the oxidation protection system of mulberry seed oil[D]. Wuhan: Hubei University of Technology, 2018. |
[30] |
Glusac J, Davidesko-Vardi I, Isaschar-Ovdat S , et al. Tyrosinase-crosslinked pea protein emulsions: Impact of zein incorporation[J]. Food Research International, 2019,116:370-378.
doi: 10.1016/j.foodres.2018.08.050 pmid: 30716959 |
[31] |
Wang Z, Gao S, Liu X , et al. Programming self-assembly of tobacco mosaic virus coat proteins at pickering emulsion interfaces for nanorod-constructed capsules[J]. ACS Applied Materials & Interfaces, 2017,9(33) : 27383-27389.
doi: 10.1021/acsami.7b08186 pmid: 28783309 |
[32] |
Gao Z, Wang J, Wu N , et al. Formation of complex interface and stability of oil-in-water (O/W) emulsion prepared by soy lipophilic protein nanoparticles[J]. Journal of Agricultural and Food Chemistry, 2013,61(32) : 7838-7847.
doi: 10.1021/jf4018349 |
[33] | Erik Van Der Linden, Foegeding E A . Gelation: principles, models and applications to proteins [M] // Kasapis S, Norton I T, Ubbink J B. Modern biopolymer science. San Diego: Academic Press, 2009: 29-91. |
[34] |
Matsumiya K, Murray B S . Soybean protein isolate gel particles as foaming and emulsifying agents[J]. Food Hydrocolloids, 2016,60:206-215.
doi: 10.1016/j.foodhyd.2016.03.028 |
[35] |
Destribats M, Rouvet M, Gehin-Delval C , et al. Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions[J]. Soft Matter, 2014,10(36) : 6941-6954.
doi: 10.1039/c4sm00179f |
[36] |
Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles [J]. Advances in Colloid and Interface Science, 2003, 100-102:503-546.
doi: 10.1016/j.jcis.2010.08.021 pmid: 20817195 |
[37] | Wang Lijuan . Farbication of zein colloid particles and their applications[D]. Guangzhou: South China University of Technology, 2014. |
[38] |
Wei Z, Cheng Y, Zhu J , et al. Genipin-crosslinked ovotransferrin particle-stabilized Pickering emulsions as delivery vehicles for hesperidin[J]. Food Hydrocolloids, 2019,94:561-573.
doi: 10.1016/j.foodhyd.2019.04.008 |
[39] |
Xue L, Xie C, Meng S , et al. Polymer-protein conjugate particles with biocatalytic activity for stabilization of water-in-water emulsions[J]. ACS Macro Letters, 2017,6(7) : 679-683.
doi: 10.1021/acsmacrolett.7b00294 |
[40] |
Setiowati A D, Vermeir L, Martins J , et al. Improved heat stability of protein solutions and O/W emulsions upon dry heat treatment of whey protein isolate in the presence of low-methoxyl pectin[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016,510:93-103.
doi: 10.1016/j.colsurfa.2016.05.034 |
[41] |
Setiowati A D, Saeedi S, Wijaya W , et al. Improved heat stability of whey protein isolate stabilized emulsions via dry heat treatment of WPI and low methoxyl pectin: Effect of pectin concentration, pH, and ionic strength[J]. Food Hydrocolloids, 2017,63:716-726.
doi: 10.1016/j.foodhyd.2016.10.025 |
[42] |
Liu X, Guo J, Wan Z , et al. Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers[J]. Food Hydrocolloids, 2018,77:168-175.
doi: 10.1016/j.foodhyd.2017.09.032 |
[43] | Lee H A, Choi S J, Moon T W . Characteristics of sodium caseinate-and soy protein isolate-stabilized emulsion-gels formed by microbial transglutaminase[J]. Journal of Food Science, 2006,71(6) : 352-357. |
[44] |
Bani Jaber A, McGuire J, Ayres J W , et al. Efficacy of the antimicrobial peptide nisin in emulsifying oil in water[J]. Journal of Food Science, 2000,65(3) : 502-506.
doi: 10.1111/jfds.2000.65.issue-3 |
[45] |
Ritzoulis C, Scoutaris N, Papademetriou K , et al. Milk protein-based emulsion gels for bone tissue engineering[J]. Food Hydrocolloids, 2005,19(3) : 575-581.
doi: 10.1016/j.foodhyd.2004.10.021 |
[46] |
Fan X, Wang Y, Zhong W , et al. Hierarchically structured all-biomass air filters with high filtration efficiency and low air pressure drop based on Pickering emulsion[J]. ACS Applied Materials & Interfaces, 2019,11(15) : 14266-14274.
doi: 10.1021/acsami.8b21116 pmid: 30912642 |
[47] |
Schulz A, Liebeck B M, John D , et al. Protein-mineral hybrid capsules from emulsions stabilized with an amphiphilic protein[J]. Journal of Materials Chemistry, 2011,21(26) : 9731.
doi: 10.1039/c1jm10662g |
[48] | Jutz G, Böker A . Bio-inorganic microcapsules from templating protein- and bionanoparticle-stabilized Pickering emulsions[J]. Journal of Materials Chemistry, 2010,2(21) : 4233-4460. |
[49] |
Al-Talib H, Al-khateeb A, Hameed A, et al. Efficacy and safety of superficial chemical peeling in treatment of active acne vulgaris[J]. Anais Brasileiros de Dermatologia, 2017,92:212-216.
doi: 10.1590/abd1806-4841.20175273 pmid: 28538881 |
[50] |
Combrinck J, Otto A, du Plessis J. Whey protein/polysaccharide-stabilized emulsions: effect of polymer type and pH on release and topical delivery of salicylic acid[J]. AAPS PharmSciTech, 2014,15(3) : 588-600.
doi: 10.1208/s12249-014-0081-3 |
[1] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[2] | 王亚茹, 莫庭源, 赖红霞, 周悦, 谢嘉颖, 谭建华. 基于斑贴及稳定性试验剖析含烟酰胺化妆品皮肤刺激性成因[J]. 日用化学工业(中英文), 2024, 54(1): 51-56. |
[3] | 王华正, 张亮, 康鑫, 康万利, 李哲, 杨红斌. CO2对长庆采出油水物性影响及乳状液稳定机理[J]. 日用化学工业(中英文), 2023, 53(6): 617-624. |
[4] | 甄恩龙, 张雯, 钱真, 杜若彤, 王洋. 乳化热固性树脂体系构建及其封堵性能评价[J]. 日用化学工业(中英文), 2023, 53(6): 649-657. |
[5] | 丁正青, 吴颖异, 王维运, 黄旭娟, 蔡照胜. 羟乙基纤维素/纳米纤维素稳定的Pickering乳液及其流变特性研究[J]. 日用化学工业(中英文), 2023, 53(3): 245-252. |
[6] | 陈宁茹, 张若淇, 韩旭, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅲ)——Pickering乳液[J]. 日用化学工业(中英文), 2023, 53(11): 1257-1265. |
[7] | 杨超, 童志明, 王占生, 陈武. 聚合物及固体颗粒对原油乳状液稳定性影响机制研究[J]. 日用化学工业(中英文), 2023, 53(10): 1156-1165. |
[8] | 郭芳. 乳化剂及增稠剂对低黏液晶乳液的影响[J]. 日用化学工业(中英文), 2023, 53(1): 16-23. |
[9] | 燕永利,蔡雨秀,豆龙龙,曹玉霞. 复杂泡沫体系排液动力学研究进展[J]. 日用化学工业, 2022, 52(9): 1011-1015. |
[10] | 沈嘉骏,宦静静,王碧佳,隋晓锋. 纳米甲壳素稳定蜂蜡油凝胶Pickering乳液的性能研究[J]. 日用化学工业, 2022, 52(8): 844-850. |
[11] | 董蕾蕾,黄天怿,段国兰,陈晗俊,张婉萍,张倩洁. 流变调节剂对W/O型乳液稳定性和流变性的影响[J]. 日用化学工业, 2022, 52(5): 457-467. |
[12] | 张倩洁,沈兴亮,盛涛涛,张婉萍,许建营. 十六烷基三甲基溴化铵-珍珠粉相互作用及其稳定乳液的双重相转变[J]. 日用化学工业, 2022, 52(5): 468-475. |
[13] | 徐杰,祝愿,徐项亮,鲍红洁. 日用化学品泡沫性能的多维度评价方法研究[J]. 日用化学工业, 2022, 52(5): 506-513. |
[14] | 谢鑫,王伟浩,刘环宇,孙梦梦,李沁园,贾露凡,孟涛. Alg@TiO2微球稳定的Pickering乳液用做防晒乳成分的研究[J]. 日用化学工业, 2022, 52(3): 229-236. |
[15] | 郭华,徐进,何云平,许虎君. 椰油酰水解燕麦蛋白钾对氨基酸洁面膏的性能影响[J]. 日用化学工业(中英文), 2022, 52(12): 1307-1313. |
|