[1] |
Ramsden W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-Membranes, bubbles, emulsions, and mechanical coagulation) preliminary account[J]. Proceedings of the Royal Society of London, 1903, 72 (4) : 156-164.
doi: 10.1098/rspl.1903.0034
|
[2] |
Pickering S U. CXCVI.-Emulsions[J]. J. Chem. Soc. Trans., 1907, 91: 2001-2021.
doi: 10.1039/CT9079102001
|
[3] |
Li H M, Yang S, Wei H W, et al. Research progress of food grade Pickering emulsion[J]. Food Science, 2015, 36 (19) : 265-270.
|
[4] |
Salager J L, Forgiarini A M. Emulsion stabilization, breaking, and inversion depends upon formulation: advantage or inconvenience in flow assurance[J]. Energy & Fuels, 2012, 26 (7) : 4027-4033.
doi: 10.1021/ef3001604
|
[5] |
Zhao Q Z, Zhou H M. Study on soybean fiber stabilized oil-in-water Pickering emulsion[J]. Modern Food Technology, 2016, 32 (10) : 39-44.
|
[6] |
Fujisawa S, Togawa E, Kuroda K. Nanocellulose-stabilized pickering emulsions and their applications[J]. Science and Technology of Advanced Materials, 2017, 18: 959-971.
doi: 10.1080/14686996.2017.1401423
pmid: 29383046
|
[7] |
Jie X, Li Y, Huang Q. Recent advances in food-grade particles stabilized Pickering emulsions: fabrication, characterization and research trends[J]. Trends in Food Science & Technology, 2016 (55) : 48-60.
|
[8] |
Rescignano N, Fortunati E, Armentano I, et al. Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles[J]. Colloid. Interface. Sci., 2015, 445: 31-39.
doi: 10.1016/j.jcis.2014.12.032
|
[9] |
Lee H V, Hamid S B, Zain S K. Conversion of lignocellulosic biomass to nanocellulose: structure andchemical process[J]. The Scientific World Journal, 2014: 631013.
|
[10] |
Seabra A B, Bernardes J S, F Varo W J, et al. Cellulose nanocrystals as carriers in medicine and their toxicities: A review[J]. Carbohydrate Polymers, 2018, 181: 345-354.
doi: 10.1016/j.carbpol.2017.10.085
|
[11] |
Zhang Y J, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering[J]. Acta Pharmaceutica Sinica B, 2018, 8 (1) : 34-50.
doi: 10.1016/j.apsb.2017.11.005
pmid: 29872621
|
[12] |
Lou Y R, Kanninen L, Kuisma T, et al. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells[J]. Stem Cells & Development, 2014, 23 (4) : 380-392.
|
[13] |
Li F, Mascheroni E, Piergiovanni L. The potential of nanocellulose in the packaging field: a review[J]. Packaging Technology and Science, 2015, 28 (6) : 475-508.
doi: 10.1002/pts.v28.6
|
[14] |
Fujisawa S, Togawa E, Kuroda K. Nanocellulose-stabilized Pickering emulsions and their applications[J]. Science and Technology of Advanced Materials, 2017, 18 (1) : 959-971.
doi: 10.1080/14686996.2017.1401423
pmid: 29383046
|
[15] |
Parajuli S, Esteban E. Benavides U. Fundamental aspects of nanocellulose stabilized pickering emulsions and foams[J]. Advances in Colloid and Interface Science, 2022, 299: 102530.
doi: 10.1016/j.cis.2021.102530
|
[16] |
Baek J, Wahid-Pedro F, Kim K, et al. Phosphorylated-CNC/modified-chitosan nanocomplexes for the stabilization of pickering emulsions[J]. Carbohydrate Polymers, 2019, 206: 520-527.
doi: S0144-8617(18)31326-2
pmid: 30553353
|
[17] |
Zhang X Z, Liu Y L, Wang Y X, et al. Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions[J]. Food Hydrocolloids, 2019 (97): 105180.
|
[18] |
Zhang K T, Ketterle L, Järvinen T, et al. Self-assembly of graphene oxide and cellulose nanocrystals into continuous filament via interfacial nanoparticle complexation[J]. Materials and Design, 2020, 193: 108791.
doi: 10.1016/j.matdes.2020.108791
|
[19] |
Fang F, Yang D, Wen Y B, et al. Preparation and properties of modified nanocellulose stabilized pickering emulsion[J]. Chinese Journal of Cereals and Oils, 2021: 1-12.
|
[20] |
Huang X J, Li Q G, Liu H, et al. Oil-in-water emulsions stabilized by saponified epoxidized soybean oil-grafted hydroxyethyl cellulose[J]. Journal of Agricultural and Food Chenfistry, 2017, 65: 3497-3504.
|
[21] |
Huang X J, Li Q G, Liu H, et al. The equilibrium and dynamic surface tension of polymeric surfactants based on epoxidized soybean oil grafted hydroxyethyl cellulose[J]. Journal of Agricultural and Food Chenfistry, 2016, 6: 64121-64128.
|
[22] |
Lu X X, Zhang H W, Li Y Q, et al. Fabrication of milled cellulose particles-stabilized Pickering emulsions[J]. Food Hydrocolloids, 2018, 77: 427-435.
doi: 10.1016/j.foodhyd.2017.10.019
|
[23] |
Jia Y Y, Zheng M M, Xu Q Q, et al. Rheological behaviors of pickering emulsions stabilized by TEMPO-oxidized bacterial cellulose[J]. Carbohydrate Polymers, 2019, 215: 263-271.
doi: S0144-8617(19)30345-5
pmid: 30981353
|
[24] |
Liu R, Tian X W, Wang Z W, et al. Water vapor barrier coating based on nanocellulose crystals stabilized AESO oil-in-water Pickering emulsion[J]. Progress in Organic Coatings, 2021, 159: 106479.
doi: 10.1016/j.porgcoat.2021.106479
|