日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (10): 1132-1139.doi: 10.3969/j.issn.2097-2806.2023.10.003
收稿日期:
2023-09-20
出版日期:
2023-10-22
发布日期:
2023-10-27
基金资助:
Niu Wenxia1,*(),Tang Jiayue2,Shang Yazhuo2,*(
)
Received:
2023-09-20
Online:
2023-10-22
Published:
2023-10-27
Contact:
*Tel.: +86-13816442598, E-mail: 摘要:
双凝胶体系是一种在不添加(或少量添加)表面活性剂的情况下,将一种液体以凝胶的形式(如油凝胶或水凝胶)分散在另一种与其不相容的凝胶(如水凝胶或油凝胶)中的特殊乳化体系。该体系兼具水凝胶和油凝胶的双重优势,不仅能同时递送亲水性和亲油性物质,而且展现出比单一凝胶更优异的性能。加之体系中不含(或含少量)表面活性剂,不会引起对敏感肌肤的刺激和脱水问题,使其在化妆品领域具有广阔的应用前景。本文首先介绍了凝胶及双凝胶体系;总结了影响双凝胶体系性质的因素,包括凝胶剂、油/水凝胶比例、油脂性质以及制备工艺等;归纳了双凝胶产品的皮肤安全性、稳定性、锁水保湿性、缓释性及肤感等。在此基础上,阐述了双凝胶体系在化妆品领域应用的研究进展。最后指出了目前双凝胶体系在化妆品领域应用中所面临的问题,并对后续亟待解决的问题提出了个人看法,旨在为性能优异的双凝胶产品的开发及应用提供基础信息,为双凝胶体系的发展方向提供参考。
中图分类号:
牛文霞, 唐嘉悦, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅱ)—双凝胶体系[J]. 日用化学工业(中英文), 2023, 53(10): 1132-1139.
Niu Wenxia, Tang Jiayue, Shang Yazhuo. New emulsion system and its application in cosmetics (II)Bigel system[J]. China Surfactant Detergent & Cosmetics, 2023, 53(10): 1132-1139.
[1] | Xu Bin, Yin Qingchun, Chen Yan, et al. Study on the interactions between surfactants and skin[J]. Detergent & Cosmetics, 2017, 40 (2) : 55-57. |
[2] | Wang Haiyan. Foam morphology of a soap-based skin cleaner and its effect on skin permeability[J]. China Cleaning Industry, 2014 (8) : 63-67. |
[3] |
Shakeel A, Lupi F R, Gabriele D, et al. Bigels: A unique class of materials for drug delivery applications[J]. Soft Materials, 2018, 16 (2) : 77-93.
doi: 10.1080/1539445X.2018.1424638 |
[4] | Xing Yuhang. Fabrication of mangiferin-loaded gel system and preliminary study on its anti-psoriatic effect[D]. Wuhan: Huazhong Agricultural University, 2022. |
[5] |
Kunal P, Vinay K S, Arfat A, et al. Hydrogel-based controlled release formulations: designing considerations, characterization techniques and applications[J]. Polymer-Plastics Technology and Engineering, 2013, 52 (14) : 1391-1422.
doi: 10.1080/03602559.2013.823996 |
[6] |
Khurram R, Mohd C I M A, Mohd H Z. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle[J]. Journal of Oleo Science, 2014, 63 (10) : 961-970.
pmid: 25252741 |
[7] |
Yuan Limin, Wu Yuejie, Qin Yan, et al. Recent advances in the preparation, characterization and applications of locust bean gum-based films[J]. Journal of Renewable Materials, 2020, 8 (12) : 1565-1579.
doi: 10.32604/jrm.2020.014562 |
[8] | Hu Qihua, Ma Chuanguo, Chen Xiaowei, et al. Advance in ethyl cellulose-based organogel and its application in foods[J]. China Oils and Fats, 2020, 45 (1) : 115-120. |
[9] |
Laredo T, Barbut S, Marangoni A G. Molecular interactions of polymer oleogelation[J]. Soft Matter, 2011, 7 (6) : 2734-2743.
doi: 10.1039/c0sm00885k |
[10] |
Alsaab H, Bonam S P, Bahl D, et al. Organogels in drug delivery: a special emphasis on pluronic lecithin organogels[J]. Journal of Pharmacy and Pharmaceutical Sciences, 2016, 19 (2) : 252-273.
doi: 10.18433/jpps.v19i2.27641 pmid: 27518174 |
[11] |
Peppas N A, Bures P, Leobandung W, et al. Hydrogels in pharmaceutical formulations[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50: 27-46.
doi: 10.1016/s0939-6411(00)00090-4 pmid: 10840191 |
[12] |
Gallardo V, Munoz M, Ruiz M A. Formulations of hydrogels and lipogels with vitamin e[J]. Journal of Cosmetic Dermatology, 2005, 4: 187-192.
pmid: 17129265 |
[13] |
Almeida I F, Fernandes A R, Fernandes L, et al. Moisturizing effect of oleogel/hydrogel mixtures[J]. Pharmaceutical Development and Technology, 2008, 13: 487-494.
doi: 10.1080/10837450802282447 pmid: 18720247 |
[14] | Francesca R L, Ahmad S, Valeria G, et al. A rheological and microstructural characterisation of bigels for cosmetic and pharmaceutical uses[J]. Materials Science & Engineering C, 2016, 69: 358-365. |
[15] |
Cloé L E, Plamen K, V G R. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications[J]. Journal of Controlled Release, 2018, 271: 1-20.
doi: S0168-3659(17)31083-0 pmid: 29269143 |
[16] |
Beauty B, Sai S S, Vinay K S, et al. Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: a comparative study[J]. Starch-Starke, 2014, 66 (9-10) : 865-879.
doi: 10.1002/star.v66.9-10 |
[17] |
Sarika P K, Preeti M P, Suraj K N, et al. Novel agar-stearyl alcohol oleogel-based bigels as structured delivery vehicles[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66 (13) : 669-678.
doi: 10.1080/00914037.2016.1252362 |
[18] |
Martinez R M, Magalhães W V, Sufi B D S, et al. Vitamin e-loaded bigels and emulsions: physicochemical characterization and potential biological application[J]. Colloids and Surfaces B: Biointerfaces, 2021, 201: 111651.
doi: 10.1016/j.colsurfb.2021.111651 |
[19] |
Lupi F R, Gentile L, Gabriele D, et al. Olive oil and hyperthermal water bigels for cosmetic uses[J]. Journal of Colloid and Interface Science, 2015, 459: 70-78.
doi: S0021-9797(15)30108-9 pmid: 26263497 |
[20] |
Di M L, Fiocco D, Varrato F, et al. Aggregation dynamics, structure, and mechanical properties of bigels[J]. Soft Matter, 2014, 10 (20) : 3633-3648.
doi: 10.1039/c3sm52558a pmid: 24668413 |
[21] |
Wakhet S, Singh V K, Sahoo S, et al. Characterization of gelatin-agar based phase separated hydrogel, emulgel and bigel: a comparative study[J]. Journal of Materials Science-Materials in Medicine, 2015, 26 (2) : 118.
doi: 10.1007/s10856-015-5434-2 |
[22] | Sahoo S, Singh V K, Biswal D, et al. Development of ionic and non-ionic natural gum-based bigels: prospects for drug delivery application[J]. Journal of Applied Polymer Science, 2015, 132 (38) : 42561. |
[23] |
Mazurkeviciute A, Ramanauskiene K, Ivaskiene M, et al. Topical antifungal bigels: Formulation, characterization and evaluation[J]. Acta Pharmaceutica, 2018, 68 (2) : 223-233.
doi: 10.2478/acph-2018-0014 |
[24] |
Almeida I F, Fernandes A R, Fernandes L, et al. Moisturizing effect of oleogel/hydrogel mixtures[J]. Pharmaceutical Development and Technology, 2008, 13 (6) : 487-494.
doi: 10.1080/10837450802282447 pmid: 18720247 |
[25] |
Beauty B, Sai S S, Kunal P, et al. Sunflower oil and protein-based novel bigels as matrices for drug delivery applications-characterization and in vitro antimicrobial efficiency[J]. Polymer-Plastics Technology and Engineering, 2015, 54 (8) : 837-850.
doi: 10.1080/03602559.2014.974268 |
[26] | Behera B, Dey S, Sharma V, et al. Rheological and viscoelastic properties of novel sunflower oil-span 40-biopolymer-based bigels and their role as a functional material in the delivery of antimicrobial agents[J]. Advances in Polymer Technology, 2015, 34 (2) : 21488. |
[27] |
Behera B, Singh V K, Kulanthaivel S, et al. Physical and mechanical properties of sunflower oil and synthetic polymers based bigels for the delivery of nitroimidazole antibiotic-a therapeutic approach for controlled drug delivery[J]. European Polymer Journal, 2015, 64: 253-264.
doi: 10.1016/j.eurpolymj.2015.01.018 |
[28] | Shi Menglin, Liu Lijia, Shang Yazhuo, et al. Preparation and properties of hydrophobically modified hyaluronic acid[J]. China Surfactant Detergent & Cosmetics, 2020, 50 (11) : 776-782. |
[29] | Fasolin L H, Martins A J, Cerqueira M A, et al. Modulating process parameters to change physical properties of bigels for food applications[J]. Food Structure, 2021, 28: 100-173. |
[30] |
Zheng Hongxia, Mao Like, Cui Mengnan, et al. Development of food-grade bigels based on kappa-carrageenan hydrogel and monoglyceride oleogels as carriers for beta-carotene: Roles of oleogel fraction[J]. Food Hydrocolloids, 2020, 105: 105855.
doi: 10.1016/j.foodhyd.2020.105855 |
[31] |
Vinay K S, Indranil B, Tarun A, et al. Guar gum and sesame oil based novel bigels for controlled drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2014, 123: 582-592.
doi: 10.1016/j.colsurfb.2014.09.056 |
[32] | Li Ruyi, Chen Mianhong, Zeng Fanke, et al. Bigel composition and their preparation method: CN115429703A[P]. 2022-12-06. |
[33] |
Andonova V, Peneva P, Georgiev G S, et al. Ketoprofen-loaded polymer carriers in bigel formulation: an approach to enhancing drug photostability in topical application forms[J]. International Journal of Nanomedicine, 2017, 12: 6221-6238.
doi: 10.2147/IJN.S140934 pmid: 28894363 |
[34] |
Patel A R, Mankoč B, Bin Sintang M D, et al. Fumed silica-based organogels and ‘aqueous-organic’ bigels[J]. RSC Advances, 2015, 5 (13) : 9703-9708.
doi: 10.1039/C4RA15437A |
[35] |
Artur J M, Pedro S, Filipe M, et al. Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties[J]. Food Research International, 2018, 116: 1298-1305.
doi: 10.1016/j.foodres.2018.10.019 |
[36] | Yang Jingyi, Zheng Hongxia, Gao Yanxiang, et al. Preparation and physicochemical properties of bigel based on alginate hydrogel and glycerin monostearate oleogel[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22 (10) : 97-107. |
[37] |
Zhu Qiaomei, Gao Jianbiao, Han Lijun, et al. Development and characterization of novel bigels based on monoglyceride-beeswax oleogel and high acyl gellan gum hydrogel for lycopene delivery[J]. Food Chemistry, 2021, 365: 130419.
doi: 10.1016/j.foodchem.2021.130419 |
[38] | Gao Mengge. The properties of Bi-gels and its application in cosmetics[D]. Shanghai: East China University of Science and Technology, 2018. |
[39] | Huang Huilin. Construction and application of water-in-oil diglycerideammonium glycyrrhizate bigels system[D]. Shanghai: East China University of Science and Technology, 2022. |
[40] | Foshan Yunshang Cosmetics Co., LTD. A high SPF sunscreen of a bigel system: CN108464948A[P]. 2018-08-31. |
[41] | Ma Chuanguo, Li Sheng, Zheng Shumin. Preparation of a bigel cosmetic based on organogels and hydrogels: CN106937917A[P]. 2017-07-11. |
[42] | Huang Yuancheng, Deng Jianming, Liu Zeyun. A bigel system of discharge makeup gel cosmetics for eye and lip and preparation method: CN110215413A[P]. 2019-09-10. |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|