[1] |
Sonja S, Schneider S W, Weishaupt C, et al. Putative neuronal mechanisms of sensitive skin[J]. Experimental Dermatology, 2010, 18 (5) : 417-423.
|
[2] |
Misery L. Sensitive skin[J]. Expert Review of Dermatology, 2013, 8 (6) : 631-637.
|
[3] |
Farage M A, Maibach H I. Sensitive skin: closing in on a physiological cause[J]. Contact Dermatitis, 2010, 62 (3) : 137-149.
doi: 10.1111/j.1600-0536.2009.01697.x
pmid: 20565500
|
[4] |
Misery L, Loser K, Ständer S. Sensitive skin[J]. Journal of the European Academy of Dermatology and Venereology, 2016, 30 (Suppl. 1) : 2-8.
|
[5] |
Huang L Y, Neher E. Ca (2+)-dependent exocytosis in the somata of dorsal root ganglion neurons[J]. Neuron, 1996, 17 (1) : 135-145.
pmid: 8755485
|
[6] |
Gouin O, L’Herondelle K, Lebonvallet N, et al. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization[J]. Protein & Cell, 2017, 8 (9) : 644-661.
|
[7] |
Berardesca E, Farage M, Maibach H. Sensitive skin: an overview[J]. International Journal of Cosmetic Science, 2013, 35 (1) : 2-8.
doi: 10.1111/j.1468-2494.2012.00754.x
pmid: 22928591
|
[8] |
Huet F, Misery L. Sensitive skin is a neuropathic disorder[J]. Experimental Dermatology, 2019, 28 (12) : 1470-1473.
doi: 10.1111/exd.13991
pmid: 31242328
|
[9] |
Li D G, Du H Y, Gerhard S, et al. Inhibition of TRPV1 prevented skin irritancy induced by phenoxyethanol. A preliminary in vitro and in vivo study[J]. International journal of cosmetic science, 2017, 39 (1) : 11-16.
doi: 10.1111/ics.12340
pmid: 27168163
|
[10] |
Aubdool A A, Brain S D. Neurovascular aspects of skin neurogenic inflammation[J]. Journal of Investigative Dermatology Symposium Proceedings, 2011, 15 (1) : 33-39.
|
[11] |
Kumagai M, Nagano M, Suzuki H, et al. Effects of stress memory by fear conditioning on nerve-mast cell circuit in skin[J]. Journal of Dermatology, 2011, 38 (6) : 553-561.
|
[12] |
Xanthos, Dimitris N, Sandkühler, et al. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity[J]. Nature Reviews Neuroscience, 2014, 15 (1) : 43-53.
doi: 10.1038/nrn3617
pmid: 24281245
|
[13] |
Renz H, Allen K J, Sicherer S H, et al. Food allergy[J]. Nature Reviews Disease Primers, 2018, 4: 17098.
doi: 10.1038/nrdp.2017.98
pmid: 29300005
|
[14] |
Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin[J]. International Journal of Molecular Sciences, 2019, 20 (6) : 1305-1305.
|
[15] |
Ackara Z B, Ilhan M, Kurtul E, et al. Inhibitory activity of Podospermum canum and its active components on collagenase, elastase and hyaluronidase enzymes[J]. Bioorganic Chemistry, 2019, 93: 103330.
|
[16] |
Choi S, Youn J, Kim K, et al. Apigenin inhibits UVA-induced cytotoxicity invitro and prevents signs of skin aging in vivo[J]. International Journal of Molecular Medicine, 2016, 38 (2) : 627-634.
|
[17] |
Man M Q, Hupe M, Sun R, et al. Topical apigenin alleviates cutaneous inflammation in murine models[J]. Evidence-Based Complementray and Alternative Medicine, 2012: 912028.
|
[18] |
Zhao G, Han X, Cheng W, et al. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells[J]. Oncology Reports, 2017, 37 (4) : 2277-2285.
doi: 10.3892/or.2017.5450
pmid: 28260058
|
[19] |
Yuan X Y, Liu W, Hao J C, et al. Topical grape seed proanthocyandin extract reduces sunburn cells and mutant p53 positive epidermal cell formation, and prevents depletion of Langerhans cells in an acute sunburn model[J]. Photomedicine and Laser Surgery, 2012, 30 (1) : 20-25.
|
[20] |
Fine A M. Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical applications[J]. Alternative Medicine Review, 2000, 5 (2) : 144-151.
pmid: 10767669
|
[21] |
Rauf A, Imran M, Abu-Izneid T, et al. Proanthocyanidins: A comprehensive review[J]. Biomedicine & Pharmacotherapy, 2019, 116: 108999.
|
[22] |
Gu J, Lane M E, Santos B D S S D, et al. Topical and transdermal botanical formulations of the Chinese pharmacopoeia: A review[J]. Phytotherapy Research, 2024, 38 (9) : 4716-4735.
|
[23] |
Ulrich-Merzenich G, Panek D, Zeitler H, et al. Drug development from natural products: Exploiting synergistic effects[J]. Indian Journal of Experimental Biology, 2010, 48 (3) : 208-219.
pmid: 21046973
|
[24] |
Dewangan J, Tandon D, Srivastava S, et al. Novel combination of salinomycin and resveratrol synergistically enhances the anti-proliferative and pro-apoptotic effects on human breast cancer cells[J]. Apoptosis An International Journal on Programmed Cell Death, 2017, 22 (10) : 1246-1259.
|
[25] |
Liang T, Zhang Z, Jing P. Black rice anthocyanins embedded in self-assembled chitosan/chondroitin sulfate nanoparticles enhance apoptosis in HCT-116 cells[J]. Food Chemistry, 2019, 301(C): 125280.
|