[1] |
Ahmed I, Asgher M, Sher F, et al. Exploring marine as a rich source of bioactive peptides: challenges and opportunities from marine pharmacology[J]. Marine Drugs, 2022, 20 (3) : 208-226.
|
[2] |
Astuti I Y, Yupitawati A, Nurulita N A. Anti-aging activity of tetrahydrocurcumin, Centella asiatica extract, and its mixture[J]. Advances in Traditional Medicine, 2021, 21 (1) : 57-63.
|
[3] |
Cai X X, Chen S Y, Liang J P, et al. Protective effects of crimson snapper scales peptides against oxidative stress on Drosophila melanogaster and the action mechanism[J]. Food and Chemical Toxicology, 2021, 148: 111965-111973.
|
[4] |
Goiris K, Muylaert K, Fraeye I, et al. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content[J]. Journal of Applied Phycology, 2012, 24 (6) : 1477-1486.
|
[5] |
Pilz M, Cavelius P, Qoura F, et al. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review[J]. Biotechnology Advances, 2023.
|
[6] |
Raveschot C, Cudennec B, Coutte F, et al. Production of bioactive peptides by lactobacillus species: from gene to application[J]. Frontiers in Microbiology, 2018.
|
[7] |
Xia E Q, Zhu X, Gao X B, et al. Antiaging potential of peptides from underused marine bioresources[J]. Marine Drugs, 2021, 19 (9) : 513-531.
|
[8] |
Xia E Q, Zhu S S, He M J, et al. Marine peptides as potential agents for the management of type 2 diabetes mellitus—a prospect[J]. Marine Drugs, 2017, 15 (4) : 88-106.
|
[9] |
Xia E Q, Zhai L, Huang Z G, et al. Optimization and identification of antioxidant peptide from underutilized Dunaliella salina protein: extraction, in vitro gastrointestinal digestion, and fractionation[J]. Biomed Research International, 2019: 1-9.
|
[10] |
Cruz C D E, Aguilar C N, Ascacio V J A, et al. Enzymatic hydrolysis and microbial fermentation: the most favorable biotechnological methods for the release of bioactive peptides[J]. Food Chemistry: Molecular Sciences, 2021, 3: 10047-10059.
|
[11] |
Zheng Z W, Xiao Z B, He Y L, et al. Heptapeptide isolated from Isochrysis zhanjiangensis exhibited anti-photoaging potential via MAPK/AP-1/MMP pathway and anti-apoptosis in UVB-irradiated HaCaT cells[J]. Marine Drugs, 2021, 19 (11) : 626-642.
|
[12] |
Jemil I, Mora L, Nasri R, et al. A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by bacillus subtilis A26 and bacillus amyloliquefaciens An6[J]. Food Research International, 2016, 89: 347-358.
doi: S0963-9969(16)30349-0
pmid: 28460924
|
[13] |
Gong Y, Kang N K, Kim Y U, et al. The NanDeSyn database for Nannochloropsis systems and synthetic biology[J]. Plant Journal, 2020, 104 (6) : 1736-1745.
|
[14] |
Deepa P K, Subramanian A, Manjusha W A. Evaluation of antioxidant potential and bioactive metabolites of Nannochloropsis sp.[J]. Journal of Advanced Applied Scientific Research, 2021, 2: 1-9.
|
[15] |
Pagels F, Amaro H M, Tavares T G, et al. Potential of microalgae extracts for food and feed supplementation-a promising source of antioxidant and anti-inflammatory compounds[J]. Life-basel, 2022, 12 (11) : 1901-1915.
|
[16] |
Weeks D P. Homologous recombination in Nannochloropsis: a powerful tool in an industrially relevant alga[J]. Proceedings of the National Academy of Sciences, 2011, 108 (52) : 20859-20860.
|
[17] |
Verspreet J, Soetemans L, Gargan C, et al. Nutritional profiling and preliminary bioactivity screening of five micro-algae strains cultivated in northwest Europe[J]. Foods, 2021, 10 (7) : 1516-1533.
|
[18] |
Norzagaray V C D, Valdez O A, Shelton L M, et al. Residual biomasses and protein hydrolysates of three green microalgae species exhibit antioxidant and anti-aging activity[J]. Journal of Applied Phycology, 2016, 29 (1) : 189-198.
|
[19] |
Hamzelou S, Belobrajdic D, Juhász A, et al. Nutrition, allergenicity and physicochemical qualities of food-grade protein extracts from Nannochloropsis oculata[J]. Food Chemistry, 2023, 424: 136459-136472.
|
[20] |
Wild K J, Steingaß H, Rodehutscord M. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102 (5) : 1306-1319.
doi: 10.1111/jpn.12953
pmid: 29981178
|
[21] |
Nwachukwu I D, Aluko R E. Structural and functional properties of food protein-derived antioxidant peptides[J]. Journal of Food Biochemistry, 2019, 43 (1) : 12761-12774.
doi: 10.1111/jfbc.12761
pmid: 31353492
|
[22] |
Baenas N, Wagner A E. Drosophila melanogaster as an alternative model organism in nutrigenomics[J]. Genes and Nutrition, 2019, 14 (1) : 14-25.
|
[23] |
Iyer J, Mhatre S D, Gilbert R, et al. Multi-system responses to altered gravity and spaceflight: Insights from Drosophila melanogaster[J]. Neuroscience and Biobehavioral Reviews, 2022, 142: 104880-104896.
|
[24] |
Zhang G, Dai X. Antiaging effect of anthocyanin extracts from bilberry on natural or UV-treated male Drosophila melanogaster[J]. Current Research in Food Science, 2022, 5: 1640-1648.
|
[25] |
He Y L, Lin L Y, Zheng H Y, et al. Potential anti-skin aging effect of a peptide AYAPE isolated from Isochrysis zhanjiangensis on UVB-induced HaCaT cells and H2O2-induced BJ cells[J]. Journal of Photochemistry and Photobiology B: Biology, 2022, 233: 112481-112491.
|
[26] |
Heo S Y, Ko S C, Kim C S, et al. A heptameric peptide purified from Spirulina sp. gastrointestinal hydrolysate inhibits angiotensin I-converting enzyme-and angiotensin Ⅱ-induced vascular dysfunction in human endothelial cells[J]. International Journal of Molecular Medicine, 2017, 39 (5) : 1072-1082.
|
[27] |
Tyagi A, Chelliah R, Banan M D E, et al. Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: a combined in vitro and in silico study[J]. Food Chemistry, 2023, 404(Part B): 134747.
|
[28] |
Wang Q, Dou X, Chen X, et al. Reevaluating protein photoluminescence: remarkable visible luminescence upon concentration and insight into the emission mechanism[J]. Angewandte Chemie International Edition, 2019, 58 (36) : 12667-12673.
|
[29] |
Li J, Zhang J, Xue Q, et al. Pyrroloquinoline quinone alleviates natural aging-related osteoporosis via a novel MCM3-Keap1-Nrf2 axis-mediated stress response and Fbn1 upregulation[J]. Aging Cell, 2023, 22 (9).
|