日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (8): 925-934.doi: 10.3969/j.issn.2097-2806.2023.08.009
王佳锐1,2,魏孝承1,2,张春雪1,2,陈昢圳1,2,郑向群1,2,3,王强1,2,*()
收稿日期:
2022-10-28
修回日期:
2023-07-28
出版日期:
2023-08-22
发布日期:
2023-08-28
通讯作者:
王强
基金资助:
Wang Jiarui1,2,Wei Xiaocheng1,2,Zhang Chunxue1,2,Chen Peizhen1,2,Zheng Xiangqun1,2,3,Wang Qiang1,2,*()
Received:
2022-10-28
Revised:
2023-07-28
Online:
2023-08-22
Published:
2023-08-28
Contact:
Qiang Wang
摘要:
表面活性剂被广泛应用于洗涤剂、乳化剂等日用化学品,随生活污水排入水环境中,浓度过高将对生态环境造成风险,威胁人体健康。由于水环境中表面活性剂种类复杂、结构不一,且存在基质干扰,因此,需进行净化富集等前处理,并结合精准的仪器分析,才能实现有效识别和定量。文章综述了含有表面活性剂的水环境样品常用的萃取法、超滤法、泡沫分离法等前处理技术及两相滴定法、电化学分析法、色谱法、光谱法等检测分析方法。并通过梳理各方法的适用条件、范围及优缺点,提出前处理和检测方法的选择取决于表面活性剂的特性和浓度;指出在线萃取富集和自动化联用技术以及便携式现场快速实时检测技术是表面活性剂检测的未来研究重点。该文旨在为水环境中表面活性剂的监测和评估提供理论依据与技术支撑。
中图分类号:
王佳锐,魏孝承,张春雪,陈昢圳,郑向群,王强. 水环境样品中表面活性剂检测方法研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 925-934.
Wang Jiarui,Wei Xiaocheng,Zhang Chunxue,Chen Peizhen,Zheng Xiangqun,Wang Qiang. Research progress on detection methods of surfactants in water samples from environment[J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 925-934.
表1
阴离子表面活性剂的水质标准"
标准 | 项目 | 最大允许质量浓度/(mg/L) | ||||
---|---|---|---|---|---|---|
Ⅰ类 | Ⅱ类 | Ⅲ类 | Ⅳ类 | Ⅴ类 | ||
地下水质量标准 GB/T 14848—2017 | 阴离子表面活性剂 | 不得检出 | 0.1 | 0.3 | 0.3 | >0.3 |
地表水环境质量标准 GB 3838—2002 | 阴离子表面活性剂 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 |
海水水质标准 GB 3097—1997 | 阴离子表面活性剂 | 0.03 | 0.1 | 0.1 | 0.1 | |
生活饮用水卫生标准 GB 5749—2022 | 阴离子合成洗涤剂 | 0.3 | ||||
污水综合排放标准 GB 8978—1996 | 阴离子表面活性剂 | 5(一级) | 10(二级) | 20(三级) | ||
农田灌溉水质标准 GB 5084—2021 | 阴离子表面活性剂 | 5(水作) | 8(旱作) | 5(蔬菜) |
表2
表面活性剂提取方法详情"
方法 | 物质 | 萃取剂/物 | 回收率 | 优点 | 缺点 |
---|---|---|---|---|---|
液液萃取法LLE | 阴离子和阳离子表面活性剂 | 甲醇、甲酸铵、乙醇、乙腈、乙酸、戊烷、丙酮、氯仿、三氯甲烷 | 80%~99% [ | 操作简单、适用性广、无需复杂前处理设备 | 有机溶剂使用量较大,易造成环境污染 |
非离子表面活性剂 | 二氯甲烷、二氯乙烷、乙酸乙酯、甲基叔丁基醚 | 88% [ | |||
固相萃取法SPE | 阳离子表面活性剂 | 十八烷基二氧化硅、氧化铝、改性聚苯乙烯-二乙烯基苯、聚甲基丙烯酸 | 79%~93% [ | 简单、快速、溶剂用量少,制备阶段不需要氯仿等有毒试剂 | 对样品的透明度要求高 |
阴离子表面活性剂 | OASISMAX复合阴离子萃取小柱 | 85.7%~98.4% [ | |||
非离子表面活性剂 | GCB,C18氧化铝,C18+SAXC18+ SCX+SAX | 70%~107% [ | |||
固相微萃取法SPME | 非离子表面活性剂 | 纤维如碳蜡-二乙烯基苯(CWAX-DVB)、碳蜡/模板树脂(CWAX-TR)、聚二甲基硅氧烷模板树脂(PDMS-TR)、聚二甲基硅氧烷-二乙烯基苯(PDMS-DVB)和聚丙烯酸酯(PA) | 快速、简便、无溶剂,检测限低 | 定量检测精度不高、可重复性不高、商业可用负载聚合物品种少 | |
磁性固相萃取法MSPE | 含氟表面活性剂 | 磁性纳米复合材料 | 90.1%~106.7% [ | 简便、快速、高效、富集倍数高 | 广泛适用性较弱,难以大范围推广应用 |
超声辅助萃取法UAE | 离子、非离子表面活性剂 | 超声波酸化/超声波 | (81%±10%)~ (118%±11%) [ | 较好的选择性、灵敏度、准确性和精密度 | 超声有效作用区域为环形,作用不均匀 |
超滤法UF | 离子、非离子表面活性剂 | 超滤膜 | 速度快、回收率高、装置简单、流程短 | 存在浓度极化现象,超滤速度会逐渐减慢 | |
泡沫分离法FF | 低浓度离子、非离子表面活性剂 | 95.99% [ | 速度快、回收率高、简单、流程短 | 不稳定、影响因素多 | |
结晶与沉淀法CP | 离子、非离子表面活性剂 | >90% [ | 简单、流程短 | 用时较长、效率不高、不稳定、影响因素多 |
表3
表面活性剂检测方法详情"
方法 | 适应性 | 物质 | 检测限 | 检测范围 | 优点 | 缺点 | |
---|---|---|---|---|---|---|---|
两相滴定法TT | 适合分子结构已知且具备指示剂、显色剂的测试 | 阴离子表面活性剂、阳离子表面活性剂 | 操作简单,抗干扰性好,容易识别,费用低廉 | 需要有毒试剂,单一指示剂易造成结果偏低 | |||
电化学分析法 EA | 电位滴定法PT | 适合样品少、需要在线测定的测试 | 十二烷基硫酸钠 | 2.4 μmol/dm3 | 3~10 000 μmol/dm3 [ | 精密度和准确度高,重复性好、操作简单、快速 | 电极选择性较差、受沉淀影响大 |
十二烷基苯磺酸钠 | 3.4 μmol/L | 5~20 000 μmol/L [ | |||||
离子选择电极法ISE | 十二烷基硫酸钠 | 1.3×10-6~6.8× 10-6 mol/L | 6.0×10-7 mol/L [ | 处理简单、速度快,耗样少,范围广和灵敏度高,可实现在线监测 | 只能检测同一类官能团物质,无法定量分析其组分,易受干扰,仪器成本高 | ||
吸附溶出伏安法ASV | 十二烷基硫酸钠 | 1.2 mg/L | 0.05~17.5 mg/L [ | 灵敏度高、设备简单 | 选择性较差 | ||
示波极谱法OP | 氯化十六烷基吡啶 | 0.01 mg/L | 0~0.6 mg/L [ | 终点敏锐,精确度好 | 仪器价格相对较高 | ||
传感器法SS | 十二烷基硫酸盐 | 3×10-6 mol/L | 10-3~10-6 mol/L [ | 快速、稳定 | 选择性较差 | ||
色谱法 CA | 高效液相色谱法HPLC | 适合对检测速度、环保有较高要求的测试 | 阴离子表面活性剂 | 5.0 μg/L | 20.0~300.0 μg/L [ | 选择性、效率高,二次污染少,检出限低 | 仪器成本高,固有毒性和可燃性 |
色谱法 CA | 气相色谱法GC | 适合气体和易挥发且稳定性好的化合物(多种酚类化合物除外) | 脂肪烷基二甲基叔胺 | 0.001~0.002 g/L | 0.005~1.0 g/L [ | 耗时较少,结果准 | 需要预处理 |
液相色谱-质谱联用法 HPLC-MS | 混合表面活性剂 | 阴离子表面活性剂 | 2 ng/mL | 2~400 ng/mL [ | 所需样品量少,快速、灵敏度高 | 定性能力较差 | |
气相色谱-质谱联用法GC-MS | 适宜测定挥发性较强的非离子表面活性剂(EO 链较短) | 油脂化学的非离子、阴离子与部分阳离子表面活性剂 | 分离能力强,能提供有关烷基链长度、同分异构体分布的信息 | 成本相对较高 | |||
超临界流体色谱法SFC | 阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂 | 非离子表面活性剂 | 效率和灵敏度高,规避固有毒性和可燃性 | 成本相对较高 | |||
薄层层析法TLC | 适合多种样品一次性快速测试 | 阴离子、阳离子和非离子表面活性剂 | 简便、快速,用样量少 | 分析成本高 | |||
光谱法SA | 分光光度法SM | 适合分子结构已知且具备络合剂、显色剂的测试 | 阴离子表面活性剂 | 1.7×10-3 mg/L | 0.2~1.7 mg/L [ | 灵敏度高、操作简单、仪器易得、费用较低 | 方法繁琐耗时,萃取剂毒性大,实际用量大,且只能检测总含量,检测限高 |
紫外光谱法UV | 适合含有苯环结构等已知化合物中存在发色团分子的表面活性剂 | 含芳香烃结构表面活性剂 | 操作简单,灵敏度高 | 依赖于化合物中存在发色团分子 | |||
荧光分析法FA | 适合具有荧光特性的表面活性剂 | 十二烷基苯磺酸钠 | 3.5×10-7 mol/L | 2.5×10-7~9.6× 10-5 mol/L [ | 操作简便、快速、精确度高、灵敏度高 | 适用范围较差 | |
红外光谱法IR | 阴离子、阳离子、非离子表面活性剂 | 阴离子、阳离子、非离子表面活性剂 | 简便快速,灵敏度高 | 缺乏分析微量化合物的适用性,成本高,用水作为溶剂干扰大 | |||
毛细管电泳法CE | 适用不同类型表面活性剂分离、分别测试 | 十二烷基硫酸钠 | 2.5×10-6 mol/L | 5.0×10-6~8.0× 10-3 mol/L [ | 操作简单,试样量少,分离效率高,成本较低 | 分离能力较弱,重现性较差,不能同时检测不同离子类型,不适用于痕量检测 | |
十二烷基苯磺酸钠 | 3.0×10-6 mol/L | 5.0×10-6~5.0× 10-3 mol/L [ | |||||
光谱法SA | 流动注射分析法FIA | 适合分子结构已知且具备络合剂、显色剂的测试 | 阴离子表面活性剂 | 0.003 mg/L | 0.012~2.000 mg/L [ | 灵敏度高、分析快、耗样少 | 仪器及流路的要求较高,不利于实时现场测定 |
共振光散射法RLS | 适用多组分产品分析测试 | 阴离子、阳离子和非离子表面活性剂 | 选择性良好、操作简单、安全无毒、耗样少 | 受pH干扰影响较大、仪器成本较高 |
[1] |
Badmus S O, Amusa H K, Oyehan T A, et al. Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques[J]. Environmental Science and Pollution Research, 2021, 28 (44) : 62085-62104.
doi: 10.1007/s11356-021-16483-w |
[2] |
Zhu Fujie, Ma Wanli, Xu Tiefu, et al. Removal characteristic of surfactants in typical industrial and domestic wastewater treatment plants in Northeast China[J]. Ecotoxicology and Environmental Safety, 2018, 153: 84-90.
doi: S0147-6513(18)30073-3 pmid: 29407743 |
[3] |
Zanoletti A, Federici S, Borgese L, et al. Embodied energy as key parameter for sustainable materials selection: The case of reusing coal fly ash for removing anionic surfactants[J]. Journal of Cleaner Production, 2017, 141: 230-236.
doi: 10.1016/j.jclepro.2016.09.070 |
[4] | Wu Wenhai, He Yifan, Liu Yuhong. Mechanism, evaluation system and protection of surfactant on skin[J]. China Surfactant Detergent &Cosmetics, 2021, 51 (3) : 235-242. |
[5] | Wang Wanxu. Thoughts on washing industry under the COVID-19 epidemic[J]. Detergent & Cosmetics, 2020, 43 (2) : 1-3. |
[6] |
Li Qi, Li Qingxian, Qiao Qingdong. Application of modern instrumental analysis on the detection of surfactants[J]. Journal of Analytical Science, 2020, 36 (1) : 143-148.
doi: 10.2116/analsci.19C013 |
[7] |
Martínez-Carballo E, Sitka A, González-Barreiro C, et al. Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part I. Application to surface, waste and indirect discharge water samples in Austria[J]. Environmental Pollution, 2007, 145 (2) : 489-496.
pmid: 16835005 |
[8] |
Olkowska E, Polkowska A, Namieśnik J. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples[J]. Talanta, 2013, 116: 210-216.
doi: 10.1016/j.talanta.2013.04.083 pmid: 24148395 |
[9] | Klontza E E, Koukouraki E E, Diamadopoulos E. An investigation of parameters affecting solid-phase microextraction (SPME) for the quantitative determination of nonylphenol polyethoxylate surfactants[J]. Fresenius Environmental Bulletin, 2011, 20 (1A) : 206-212. |
[10] |
Boydboland A A, Pawliszyn J B. Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of alkylphenol ethoxylate surfactants in water[J]. Analytical Chemistry, 1996, 68 (9) : 1521.
doi: 10.1021/ac950902w pmid: 21619117 |
[11] | Meng Dongling, Xu Xueqin, Li Xiaolan, et al. A magnetic solid phase extraction combined with high performance liquid chromatography method for the detection of 3 acetyl 2, 5 dimethyl thiophene: CN107064358A[P]. 2020-01-17. |
[12] | Zhou Yusun, Tao Yun, Zhou Tingting, et al. Rapid determination of trace perfluorinated compounds in environmental water sample by magnetic solid-phase extraction coupled with ultra high-performance liquid chromatography-tandem mass spectrometry[J]. Highlights of Sciencepaper Online, 2016, 9 (17) : 1827-1833. |
[13] | Chen Fusheng, Cheng Xiaoli, Li Lite, et al. Study on removal of residual surfactant in oil by ultrasound[J]. Science and Technology of Food Industry, 2010 (5) : 231-233, 237. |
[14] |
Higgins C P, Field J A, Criddle C S, et al. Quantitative determination of perfluorochemicals in sediments and domestic sludge[J]. Environmental Science & Technology, 2005, 39 (11) : 3946.
doi: 10.1021/es048245p |
[15] | Zhang Xue, Li Fuzhi, Zhao Xuan. Treatment of surfactants with concentrations below critical micelle concentration by ultrafiltration: a mini-review[J]. Water Cycle, 2022 (3) : 50-55. |
[16] |
Kumar Awadh Kishor, Neha Rawat, Pallab Ghosh. Removal and recovery of a cationic surfactant from its aqueous solution by foam fractionation[J]. Journal of Environmental Chemical Engineering, 2020, 8 (2) :103555.
doi: 10.1016/j.jece.2019.103555 |
[17] |
Boonyasuwat S, Chavadej S, Malakul P, et al. Surfactant recovery from water using a multistage foam fractionator: effect of surfactant type[J]. Separation Science and Technology, 2009, 44 (7) : 1544-1561.
doi: 10.1080/01496390902775380 |
[18] | Tian Jing, Wang Jing, Ji Guang, et al. Research progress of rhamnolipid biosurfactant and its purification methods[J]. Chemistry & Bioengineering, 2010, 27 (6) : 13-16. |
[19] | Chen Shujun, Yu Baoshan. Determination of non-ionic surfactants in waste water potassium tetrabromocadmate complex extraction atomic absorption spectrometric method[J]. Journal of Instrumental Analysis, 1992 (5) : 34-36. |
[20] | Xie Yingshuang. The research of determination of anionic surfactants in environmental water samples by solid-phase extraction-high performance liquid chromatography[D]. Lanzhou: Northwest Normal University, 2011. |
[21] | Chen Xueyan, Song Bitao, Zhang Yaoyao, et al. Recent advances of researches on determination of nonionic surfactants[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2014 (7) : 7. |
[22] | Li Fei, Shen Chunhua, Zeng Qingling, et al. Optimization of sensitive determination of perfluoroalkyl surfactants in sewage sludge[J]. Acta Scientiae Circumstantiae, 2012, 32 (7) : 1620-1630. |
[23] | Li Cangmin. Study on foam separation of surfactant from its aqueous solution[D]. Tianjin: Tianjin University, 2010. |
[24] | International Organization for Standardization.Surface active agents-detergents-determination of cationic-active matter content-part2: Cationic-active matter of low olecularmass(between 200 and 500): ISO 2871—2—2010[S]. Switzerland: International Organization for Standardization, 2010. |
[25] | Matesic-Puac R, Sak-Bosnar M, Bilic M, et al. Potentiometric determination of anionic surfactants using a new ion-pair-based all-solid-state surfactant sensitive electrode[J]. Sensors and Actuators B: Chemical, 2005, 111/112 (1) : 221-228. |
[26] | Wu Pingping, Lu Guiqian, Wang Hongwei. Potentiometric titration testing on nonionic surfactant in liquid detergent[J]. China Cleaning Industry, 2010 (6) : 79-81. |
[27] | Xue Wei, Du Zhiping, Wang Wanxu, et al. Preparation and application of combined surfactant ion selective electrode[J]. China Surfactant Detergent & Cosmetics, 2011, 41 (2) : 4. |
[28] |
Ma J S, Lizondo-Sabater J, Benito A, et al. A new ion-selective electrode for anionic surfactants[J]. Talant, 2007, 71 (1) : 333-338.
doi: 10.1016/j.talanta.2006.04.005 |
[29] |
Ghiasvand Ali Reza, Zohreh Taherimaslak, Mehdi Allahyari. Sensitive and selective spectrophotometric and a new adsorptive stripping voltammetric determination of sodium dodecyl sulfate in nonaqueous solution after its extraction using toluidine blue[J]. International Journal of Electrochemical Science, 2009, 4 (2) : 320-335.
doi: 10.1016/S1452-3981(23)15132-7 |
[30] | Yang Guizhu, Zhang Liwei. To determint the lotent of the active agent by oscilopolarographic titration[J]. Journal of Beihua University(Social Sciences), 1997 (5) : 46-48. |
[31] | Ma Zhidong, Guo Zhong, Zhang Wende. Study on the oscillopolarographic determination of cationic surfactants of pyridinium salts[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2003, 39 (6) : 2. |
[32] | Wei Wenjing. New methods for rapid determination of anionic surfactant and pheno[D]. Chongqing: Chongqing University, 2011. |
[33] |
Mostafa, Gamal A E. PVC Matrix membrane sensor for potentiometric determination of dodecylsulfate[J]. International Journal of Environmental Analytical Chemistry, 2008, 88 (6) : 435-446.
doi: 10.1080/03067310701717735 |
[34] | Liu Xiaodong, Pohl Christopher A, Weiss J. New polar-embedded stationary phase for surfactant analysis[J]. Journal of Chromatography A, 2006: 29-34. |
[35] | Wang Jun, Wang Shunzhi, Wei Shuang, et al. Determination of anionic surfactant in natural drinking water in Tibet by high performance liquid chromatography with fluorescence detection[J]. Food and Drug, 2022, 24 (3) : 218-221. |
[36] |
Harrison C R, Lucy C A. Determination of zwitterionic and cationic surfactants by high-performance liquid chromatography with chemiluminescenscent nitrogen detection[J]. J Chromatogr A, 2002, 956 (1) : 237-244.
doi: 10.1016/S0021-9673(02)00210-8 |
[37] |
Nakamura K, Morikawa Y, Matsumoto I. Rapid analysis of ionic and nonionic surfactant homologs by high performance liquid chromatography[J]. Journal of the American Oil Chemists’ Society, 1981, 58 (1) : 72-77.
doi: 10.1007/BF02666058 |
[38] |
Clara M, Scharf S, Scheffknecht C, et al. Occurrence of selected surfactants in untreated and treated sewage[J]. Water Res, 2007, 41 (19) : 4339-4348.
pmid: 17624392 |
[39] | Luo Hongyuan, Qing Fei, Luo Lianzhong, et al. Determination of fatty alkyl dimethyl tertiary amines by gas chromatography in the synthesis of cationic surfactants[J]. Chinese Journal of Chromatography, 2019, 37 (5) : 4. |
[40] | Li Yucui. The Research of detection 18 kinds of surfactants by HPLC-MS/MS[D]. Qingdao: Ocean University of China, 2014. |
[41] | Yuan Huijuan, Song Guoxin, Hu Yaoming. Analysis of sulfonic acids anionic surfactant by gas chromatography/mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2006 (11) : 1629-1632. |
[42] | Zhu Chun. Application of chromatography in the monitoring of residual substances in surfactants and their products[D]. Shanghai: Shanghai Jiao Tong University, 2019. |
[43] | Tang Yan, Pan Jinheng, Sun Tangqiang, et al. Ultra‐high performance supercritical fluid chromatography combined with quadrupole time‐of‐flight mass spectrometry for the characterization of pentaerythritol fatty acid esters[J]. Rapid Commun Mass Spectrom, 2020, 34 (8) : e8664. |
[44] |
Eva, Ródenas-Torralba, And, et al. An environmentally friendly multicommutated alternative to the reference method for anionic surfactant determination in water[J]. Talanta, 2005, 66 (3) : 591-599.
doi: 10.1016/j.talanta.2004.12.006 pmid: 18970025 |
[45] | Chen Fengming, Deng Fei, Ruan Tiemin, et al. Quantitative analysis of surfacants containing aromatic hydrocarbon structure via UV spectroscopy[J]. Knitting Industries, 2019 (9) : 50-53. |
[46] | Li Dan, Dong Suozhuai, Zhou Wenlong. Qualitative and quantitative analysis of alkylphenol polyethoxylates in solution via UV spectroscopy[J]. Journal of Textile Research, 2011, 32 (4) : 66-70. |
[47] |
Liu J, Liu Y, Peng L, et al. Simple and sensitive method for spectrofluorimetric determination of dodecyl benzene sulfonic acid sodium[J]. Molecular and Biomolecular Spectroscopy, 2006, 65 (5) : 1131-1133.
doi: 10.1016/j.saa.2006.01.046 |
[48] | Guo Hui, Zhuang Yuwei, Pang Haiyan, et al. Studies on the reaction mechanism of cationic quaternary ammonium Gemini surfactant by IR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(S1) : 3-4. |
[49] |
Kurrey R, Deb M K, Shrivas K. Methyl orange paired microextraction and diffuse reflectance‐fourier transform infrared spectral monitoring for improved signal strength of total mixed cationic surfactants[J]. Journal of Surfactants and Detergents, 2018, 21 (2) : 197-208.
doi: 10.1002/jsde.2018.21.issue-2 |
[50] | Kurrey R, Deb M K, Shrivas K, et al. A KBr-impregnated paper substrate as a sample probe for the enhanced ATR-FTIR signal strength of anionic and non-ionic surfactants in an aqueous medium[J]. RSC Adv, 2020, 1 (66) : 4428-4441. |
[51] | Wei Shoulian, Zheng Yanpeng, Xie Tianyao. Study on the separation of anionic surfactant by capillary electrophoresis with conductance detection[J]. Journal of Instrumental Analysis, 2004, 23 (2) : 31-34. |
[52] | Gu Lifen. Optimum scheme for analyzing anionic surfactants in water samples by SAN++ continuous flow analyser[J]. Pollution Control Technology, 2019, 32 (3) : 5. |
[53] | Lv Peng, Zuo Qingquan, Li Qi, et al. Review of various measurement methods for surfactants[J]. China Surfactant Detergent & Cosmetics, 2015, 45 (11) : 643-647. |
[1] | 张志升, 沈产量, 李建勋, 刘延强, 韩薇薇, 董三宝. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[2] | 李国峰, 刘凯楠, 莫文龙, 马腾. 页岩油藏渗吸驱油剂体系性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 250-258. |
[3] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[4] | 张红梅, 张永民. [芥酰胺苯甲酸][胆碱]离子液体表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 149-155. |
[5] | 刘佩, 潘婷, 裴晓梅, 宋冰蕾, 蒋建中, 崔正刚, Bernard P. Binks. 非离子-阴离子Bola型表面活性剂和纳米SiO2颗粒协同稳定的双重响应型O/W乳状液[J]. 日用化学工业(中英文), 2024, 54(1): 1-15. |
[6] | 艾浩康, 姜亚洁, 王亚魁, 张璐, 耿涛. 硬脂酸酯双子季铵盐的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(1): 16-23. |
[7] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
[8] | 常世腾, 蔡小军, 郑延成, 刘雪瑾, 易晓, 蒋筑阳. 琥珀酸酯磺酸盐物化特性及其与甜菜碱复配体系界面性能[J]. 日用化学工业(中英文), 2023, 53(9): 989-998. |
[9] | 徐德荣,连威,熊金钊,康万利. 致密油藏表面活性剂渗吸影响因素研究[J]. 日用化学工业(中英文), 2023, 53(8): 857-864. |
[10] | 牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924. |
[11] | 强学峰, 张莉, 郑斌, 侯倩倩, 燕坤. 无机盐KCl对离子型表面活性剂泡沫演化规律研究[J]. 日用化学工业(中英文), 2023, 53(7): 733-741. |
[12] | 邢环宇, 贾丽华, 赵振龙, 杨瑞, 郭祥峰. 含萘酰亚胺和烷基疏水基的新型表面活性剂合成及性能[J]. 日用化学工业(中英文), 2023, 53(7): 742-747. |
[13] | 付江鹏, 杜金梅, 苗大刚, 肖国威, 蒋阳, 许长海. 表面活性剂在活化氧漂体系去除纺织品有色污渍中的作用[J]. 日用化学工业(中英文), 2023, 53(5): 511-516. |
[14] | 卓文珊, 冯顺卿, 唐建锋. 高效液相色谱法-蒸发光散射检测器测定表面活性剂中月桂酰基甘氨酸钠含量[J]. 日用化学工业(中英文), 2023, 53(2): 220-225. |
[15] | 张永康, 刘萌萌, 万智卫, 王耀聪, 田咪咪, 秋列维. 联结基团对甜菜碱型双子表面活性剂清洁压裂液性能的影响[J]. 日用化学工业(中英文), 2023, 53(12): 1398-1404. |
|