日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (3): 260-270.doi: 10.3969/j.issn.1001-1803.2023.03.003
吴雨闻1,卞筱颖2,岳岭佳2,常宽1,*(),王靖1,*(
)
收稿日期:
2023-03-03
出版日期:
2023-03-22
发布日期:
2023-03-22
基金资助:
Wu Yuwen1,Bian Marina2,Yue Zoe2,Chang Kuan1,*(),Wang Jing1,*(
)
Received:
2023-03-03
Online:
2023-03-22
Published:
2023-03-22
Contact:
* Tel.: +86-18810876236, E-mail: 摘要:
力学性能的好坏是衡量头发健康与否的重要标准之一。健康的发束,头发力学性能优异,而受损发束会在日常梳理中发生断裂。然而,头发并非单一均质材料,因此对其力学性能进行系统、科学的表征较为复杂。基于此,本文介绍了头发力学性能的测试方法以及拉伸曲线的含义,阐述了头发内部结构和组成对拉伸性能的影响,列举了数种影响头发拉伸性能的因素并分析了市面上几种提升头发拉伸性能的原料及其作用机理,以期对护发产品中具有发丝强韧效果的成分以及新产品的开发提供参考。
中图分类号:
吴雨闻, 卞筱颖, 岳岭佳, 常宽, 王靖. 头发与头皮护理的科学基础(Ⅲ)——头发的力学性能[J]. 日用化学工业(中英文), 2023, 53(3): 260-270.
Wu Yuwen, Bian Marina, Yue Zoe, Chang Kuan, Wang Jing. Scientific foundations of hair and scalp care (Ⅲ)Mechanical properties of human hair[J]. China Surfactant Detergent & Cosmetics, 2023, 53(3): 260-270.
表1
弹性区域变量的符号(每个变量的描述都在方括号中给出了Dia-Stron符号和关于该变量如何产生的简短描述)"
变量/单位 | 定义 |
---|---|
弹性模量(Mod-E)/GPa | 弹性区域的弹性模量,等于[ELASTIC EMOD Pa] |
弹性梯度(Grad-E)/GPa | 根据弹性区域的斜率计算的模量,基于[弹性梯度,MPa/mm]。值相对于标称初始样本长度(30 mm)进行标准化。重新评级为GPa |
弹性应变(Stre-E)/GPa | 根据软件确定的弹性应变值的应力模量。根据[弹性应力,MPa]计算,对[弹性延伸]进行归一化,并重新换算为GPa |
弹性(Stra-E)/% | 确定弹性区域结束和屈服区域开始的应变率 |
表2
屈服区域变量的符号(FCA=纤维横截面积。根据FCA标准化参数,以产生材料特定变量)"
变量/单位 | 定义 |
---|---|
屈服区应力(PlatS-YR)/MPa | 介于≈2%和≈30%应变之间的屈服区域的平均应力。等同于(PATEAU STRESS),为FCA标准下的屈服区载荷 |
屈服区应力(S15%-YR)/MPa | 15%应变下屈服区的应力(FCA标准下) |
屈服区应力(S25%-YR)/MPa | 25%应变下屈服区的应力(FCA标准下) |
屈服区应变(Stra-YR)/% | 屈服区和后屈服区之间过渡的估算应变伸长率,弹性区域的端点应变和断裂应变之间的中点 |
特定功(Ws15%-YR)/(kJ/m2) | 达到15%应变的特定功(FCA标准下的特定功) |
特定功(Ws25%-YR)/(kJ/m2) | 达到25%应变的特定功(FCA标准下的特定功) |
[1] |
Hearle J W S. A critical review of the structural mechanics of wool and hair fibres[J]. International Journal of Biological Macromolecules, 2000, 27 (2) : 123-138.
doi: 10.1016/s0141-8130(00)00116-1 pmid: 10771062 |
[2] |
Wortmann F J, Zahn H. The stress/strain curve of α-keratin fibers and the structure of the intermediate filament[J]. Textile Research Journal, 1994, 64 (12) : 737-743.
doi: 10.1177/004051759406401206 |
[3] |
Yang W, Yu Y, Ritchie R O, et al. On the strength of hair across species[J]. Matter, 2020, 2 (1) : 136-149.
doi: 10.1016/j.matt.2019.09.019 |
[4] | Tate M L, Kamath Y K, Ruetsch S B, et al. Quantification and prevention of hair damage[J]. Journal of the Society of Cosmetic Chemists, 1993, 44 (6) : 347-372. |
[5] |
Wortmann F J, Quadflieg J M, Wortmann G. The information content of tensile tests of human hair (wet) is limited: Variables mainly cluster in just two principal components[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 129: 105145.
doi: 10.1016/j.jmbbm.2022.105145 |
[6] |
Cloete E, Khumalo N P, Ngoepe M N. Understanding curly hair mechanics: fiber strength[J]. Journal of Investigative Dermatology, 2020, 140 (1) : 113-120.
doi: 10.1016/j.jid.2019.06.141 |
[7] |
Tiampasook P, Chaiyasut C, Sundaram S B, et al. Effect of Phyllanthus emblica Linn. on tensile strength of virgin and bleached hairs[J]. Applied Sciences, 2020, 10 (18) : 6305.
doi: 10.3390/app10186305 |
[8] |
Jelen K, Skřontová M, Šimkova L, et al. Changes in the mechanical parameters of hair in a group of women in reproductive age[J]. Neuroendocrinology Letters, 2014, 35 (6) : 481-489.
pmid: 25433839 |
[9] | Deem D E, Rieger M M. Mechanical hysteresis of chemically modified hair[J]. Journal of the Society of Cosmetic Chemists, 1968, 19 (6) : 395. |
[10] |
Yang F C, Zhang Y, Rheinstädter M C. The structure of people’s hair[J]. PeerJ, 2014, 2: e619.
doi: 10.7717/peerj.619 |
[11] |
Antunes E, Cruz C F, Azoia N G, et al. Insights on the mechanical behavior of keratin fibrils[J]. International Journal of Biological Macromolecules, 2016, 89: 477-483.
doi: 10.1016/j.ijbiomac.2016.05.018 pmid: 27164495 |
[12] |
Popescu C, Höcker H. Hair—the most sophisticated biological composite material[J]. Chemical Society Reviews, 2007, 36 (8) : 1282-1291.
pmid: 17619688 |
[13] |
Parbhu A N, Bryson W G, Lal R. Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM[J]. Biochemistry, 1999, 38 (36) : 11755.
pmid: 10512632 |
[14] |
Wortmann F J, Springob C, Sendelbach G. Investigations of cosmetically treated human hair by differential scanning calorimetry in water[J]. Journal of Cosmetic Science, 2002, 53 (4) : 219-228.
pmid: 12219248 |
[15] |
Barba C, Scott S, Kelly R, et al. New anionic surface‐active agent derived from wool proteins for hair treatment[J]. Journal of Applied Polymer Science, 2010, 115 (3) : 1461-1467.
doi: 10.1002/app.v115:3 |
[16] |
Kim N K, Lin R, Bhattacharyya D. Extruded short wool fibre composites: Mechanical and fire retardant properties[J]. Composites Part B, 2014, 67: 472-480.
doi: 10.1016/j.compositesb.2014.08.002 |
[17] |
Yu Y, Yang W, Wang B, et al. Structure and mechanical behavior of human hair[J]. Materials Science and Engineering: C, 2017, 73: 152-163.
doi: 10.1016/j.msec.2016.12.008 |
[18] | Kuzuhara A. Analysis of structural changes in permanent waved human hair using Raman spectroscopy[J]. Biopolymers: Original Research on Biomolecules, 2007, 85 (3) : 274-283. |
[19] |
Breakspear S, Noecker B, Popescu C. Relevance and evaluation of hydrogen and disulfide bond contribution to the mechanics of hard alpha-keratin fibres[J]. The Journal of Physical Chemistry B, 2019, 123 (21) : 4505-4511.
doi: 10.1021/acs.jpcb.9b01690 |
[20] | Benzarti M, Tkaya M B, Mattei C P, et al. Hair mechanical properties depending on age and origin[J]. International Journal of Biotechnology and Bioengineering, 2011, 5 (2) : 66-72. |
[21] |
Benzarti M, Pailler-Mattei C, Jamart J, et al. The effect of hydration on the mechanical behaviour of hair[J]. Experimental Mechanics, 2014, 54: 1411-1419.
doi: 10.1007/s11340-014-9904-0 |
[22] |
Fernandez E, Barba C, Alonso C, et al. Photodamage determination of human hair.[J]. Photochem Photobiol B., 2012, 106: 101-106.
doi: 10.1016/j.jphotobiol.2011.10.011 |
[23] |
Herrling T, Jung K, Fuchs J. The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair[J]. Spectrochim Acta A Mol. Biomol. Spectrosc., 2008, 69 (5) : 1429-1435.
doi: 10.1016/j.saa.2007.09.030 |
[24] |
Plonka P M. Electron paramagnetic resonance as a unique tool for skin and hair research.[J]. Exp. Dermatol., 2009, 18 (5) : 472-484.
doi: 10.1111/j.1600-0625.2009.00883.x pmid: 19368555 |
[25] |
Alexander P, Fox M, Hudson R F. The reaction of oxidizing agents with wool. 5. The oxidation products of the disulphide bond and the formation of a sulphonamide in the peptide chain[J]. Biochemical Journal, 1951, 49 (2) : 129.
pmid: 14858297 |
[26] |
Wortmann F J, Quadflieg J M, Wortmann G. Comparing hair tensile testing in the wet and the dry state: Possibilities and limitations for detecting changes of hair properties due to chemical and physical treatments[J]. International Journal of Cosmetic Science, 2022, 44 (4) : 421-430.
doi: 10.1111/ics.v44.4 |
[27] |
Herrmann K W. Hair keratin reaction, penetration, and swelling in mercaptan solutions[J]. Transactions of the Faraday Society, 1963, 59: 1663-1671.
doi: 10.1039/tf9635901663 |
[28] | Kuzuhara A. Analysis of structural changes in permanent waved human hair using Raman spectroscopy[J]. Biopolymers: Original Research on Biomolecules, 2007, 85 (3) : 274-283. |
[29] |
Garson J C, Vidalis M, Roussopoulos P, et al. The transverse vibrational properties of keratin fibres in the presence of water and other materials[J]. International Journal of Cosmetic Science, 1980, 2 (5) : 231-241.
pmid: 19467096 |
[30] |
Sayahi E, Harizi T, Msahli S, et al. Physical and mechanical properties of T unisian women hair[J]. International Journal of Cosmetic Science, 2016, 38 (5) : 470-475.
doi: 10.1111/ics.12313 pmid: 26865310 |
[31] |
Thibaut S, De Becker E, Bernard B A, et al. Chronological ageing of human hair keratin fibres[J]. International Journal of Cosmetic Science, 2010, 32 (6) : 422-434.
doi: 10.1111/j.1468-2494.2009.00570.x pmid: 20384898 |
[32] |
Jeong K H, Kim K S, Lee G J, et al. Investigation of aging effects in human hair using atomic force microscopy[J]. Skin Research and Technology, 2011, 17 (1) : 63-68.
doi: 10.1111/j.1600-0846.2010.00466.x pmid: 20923464 |
[33] |
Zhou A J, Liu H L, Du Z Q. Secondary structure estimation and properties analysis of stretched Asian and Caucasian hair[J]. Skin Research and Technology, 2015, 21 (1) : 119-128.
doi: 10.1111/srt.12169 pmid: 25073800 |
[34] |
Duvel L, Chun H, Deppa D, et al. Analysis of hair lipids and tensile properties as a function of distance from scalp[J]. International Journal of Cosmetic Science, 2005, 27 (4) : 193-197.
doi: 10.1111/j.1467-2494.2005.00236.x pmid: 18492187 |
[35] | Yuen C, Kan C W, Chow Y L. Effect of sun protection agent on preventing hair colour fading and hair damage[J]. Fibers & Polymers, 2010, 11: 316-320. |
[36] |
Barba C, Scott S, Kelly R, et al. New anionic surface-active agent derived from wool proteins for hair treatment[J]. Journal of Applied Polymer Science, 2010, 115 (3) : 1461-1467.
doi: 10.1002/app.v115:3 |
[37] | Benaiges A, Fernández E, Martínez-Teipel B, et al. Hair efficacy of botanical extracts[J]. Journal of Applied Polymer Science, 2013, 5 (4) : 861-868. |
[38] | Azizova M, Archibald E A, Tasker R, et al. Hair treatment composition with naturally-derived peptide identical to human hair: US 9505820[P]. 2016-11-29. |
[39] | Tinoco A, Martins M, Cavaco-Paulo A, et al. Biotechnology of functional proteins and peptides for hair cosmetic formulations[J]. Trends in Biotechnology, 2021, 16 (10) : 1-15. |
[40] |
Song K, Xu H, Xie K, et al. Effects of chemical structures of polycarboxylic acids on molecular and performance manipulation of hair keratin[J]. Rsc. Advances, 2016, 6 (63) : 58594-58603.
doi: 10.1039/C6RA08797C |
[41] | Pressly E D, Hawker C J. Keratin treatment formulations and methods: US 9326926[P]. 2016-05-03. |
[42] |
Fernandes M M, Lima C F, Loureiro A, et al. Keratin-based peptide: biological evaluation and strengthening properties on relaxed hair[J]. International Journal of Cosmetic Science, 2012, 34 (4) : 338-346.
doi: 10.1111/j.1468-2494.2012.00727.x pmid: 22515553 |
[43] |
Cruz C F, Azoia N G, Matamá T, et al. Peptide—protein interactions within human hair keratins[J]. International Journal of Biological Macromolecules, 2017, 101: 805.
doi: 10.1016/j.ijbiomac.2017.03.052 |
[1] | 陈丽媛, 高合意, 唐金晶, 刘作华, 刘仁龙. 锰化合物抗氧化及保护头发光损伤功效评价[J]. 日用化学工业(中英文), 2023, 53(9): 1044-1050. |
[2] | 方承格, 马玲, 陈殿松, 常宽, 王靖. 头发与头皮护理的科学基础(Ⅶ)——头发灰白的原因及变黑的方法[J]. 日用化学工业(中英文), 2023, 53(7): 748-756. |
[3] | 常宽,马铃,陈殿松,王靖. 头发性质与头发护理的科学基础(Ⅱ)—— 头发的谱学表征技术[J]. 日用化学工业(中英文), 2023, 53(2): 140-148. |
[4] | 吴雨闻, 马铃, 陈殿松, 常宽, 王靖. 头发与头皮护理的科学基础(Ⅰ)——水分对头发性能的影响以及头发保湿锁水功效的研究[J]. 日用化学工业(中英文), 2023, 53(1): 8-15. |
[5] | 麦景璋,李琳,何金清,李泽勇. 增稠定型二合一流变改性剂的合成及应用研究[J]. 日用化学工业, 2022, 52(9): 960-968. |
[6] | 胡晨毓,曲文杰,郭学平,徐桂欣,邹松岩,王靖. 透明质酸钠的多重护发功效研究[J]. 日用化学工业, 2022, 52(4): 370-375. |
[7] | 梁新宇,徐志远,赵贵钧. 一种利用核磁共振氢谱表征植物油在头发内渗透性的方法[J]. 日用化学工业, 2020, 50(4): 244-248. |
[8] | 何文丹,刘磊,杨舒颜,唐颖. 化妆品功效评价(XI)——体外试验技术在发用化妆品功效评价中的应用[J]. 日用化学工业, 2019, 49(1): 5-7. |
[9] | 曹月, 瞿昊. 头发光损伤评价方法[J]. 日用化学工业, 2017, 47(5): 286-291. |
[10] | 牛丽娟, 瞿欣. 香烟烟雾为模型的污染环境对头发损伤的研究[J]. 日用化学工业, 2017, 47(10): 562-567. |
|