日用化学工业 ›› 2021, Vol. 51 ›› Issue (6): 554-563.doi: 10.3969/j.issn.1001-1803.2021.06.013
收稿日期:
2020-07-13
修回日期:
2021-05-08
出版日期:
2021-06-22
发布日期:
2021-06-22
通讯作者:
孙继勇,宋爱新
作者简介:
龚成易(1996-),男,陕西安康人,硕士研究生,电话:18306121901,E-mail: 基金资助:
GONG Cheng-yi1(),YU Hao2,WANG Qi-qi2,SUN Ji-yong2(
),SONG Ai-xin1(
)
Received:
2020-07-13
Revised:
2021-05-08
Online:
2021-06-22
Published:
2021-06-22
Contact:
Ji-yong SUN,Ai-xin SONG
摘要:
Pickering乳液具有很多优势,尤以动力学因素赋予的优异稳定性著称。但实际应用中经常只需要体系暂时稳定,而后根据应用过程的需要实现快速破乳或者使乳液类型发生转变。因此,近年来刺激响应性Pickering乳液受到了广泛关注。文章主要从影响乳液性质的颗粒润湿性入手,总结了赋予Pickering乳液以响应行为的常见策略,综述了对pH、温度、CO2、光、外力场、氧化-还原、离子强度等单一刺激以及多重外部刺激发生响应行为的Pickering乳液,并简要介绍了Pickering乳液的刺激响应行为在催化反应、物质控释、高内相乳液制备、材料制备等领域的应用,最后对其发展方向进行了展望。
中图分类号:
龚成易,于浩,王琦琦,孙继勇,宋爱新. 刺激响应性Pickering乳液及其应用研究进展[J]. 日用化学工业, 2021, 51(6): 554-563.
GONG Cheng-yi,YU Hao,WANG Qi-qi,SUN Ji-yong,SONG Ai-xin. Progress on stimulus-responsive Pickering emulsions and their applications[J]. China Surfactant Detergent & Cosmetics, 2021, 51(6): 554-563.
[1] | Nesterenko A, Drelich A, Lu H, et al. Influence of a mixed particle/surfactant emulsifier system on water-in-oil emulsion stability[J]. Colloids and Surfaces A:Physic Chemical and Engineering Aspects, 2014,457:49-57. |
[2] |
Pickering S U. Pickering:emulsions[J]. Journal of Chemical Society, 1907,91:2001-2021.
doi: 10.1039/CT9079102001 |
[3] |
Binks B P. Particles as surfactants:similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002,7(1): 21-41.
doi: 10.1016/S1359-0294(02)00008-0 |
[4] |
Vivaldini D O, Luz A P, Salvini V R, et al. Why foams containing colloidal hydrophilic particles are unstable?[J]. Ceramics International, 2013,39(5): 6005-6008.
doi: 10.1016/j.ceramint.2013.01.007 |
[5] |
Tu Fuquan, Park B J, Lee D. Thermodynamically stable emulsions using Janus dumbbells as colloid surfactants[J]. Langmuir, 2013,29(41): 12679-12687.
doi: 10.1021/la402897d pmid: 24044808 |
[6] |
Tang Juntao, Quinlan P J, Tam K C. Stimuli-responsive Pickering emulsions:recent advances and potential applications[J]. Soft Matter, 2015,11(18): 3512-3529.
doi: 10.1039/c5sm00247h pmid: 25864383 |
[7] |
Dickinson E. Food emulsions and foams:stabilization by particles[J]. Current Opinion in Colloid & Interface Science, 2010,15(1/2): 40-49.
doi: 10.1016/j.cocis.2009.11.001 |
[8] |
Tian Shiwei, Mao Guoliang, Zhang Jiayu, et al. Switchable Pickering emulsion system[J]. Progress in Chemistry, 2020,32(4): 434-453.
doi: 10.7536/PC190633 |
[9] | Jiang Cun, Zeng Youlan, Ding Zhiyi, et al. Research progress of environmental response Pickering emulsion[J]. Chinese Journal of Colloid & Polymer, 2016,34(2): 78-81. |
[10] | Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003,100:503-546. |
[11] | Yi Chenglin, Yang Yiqun, Jiang Jinqiang, et al. Research and application of particle emulsifiers[J]. Progress in Chemistry, 2011,23(1): 65-79. |
[12] |
Ren Gaihuan, Wang Maoxin, Wang Lei, et al. Dynamic covalent silica nanoparticles for pH-switchable Pickering emulsions[J]. Langmuir, 2018,34(20): 5798-5806.
doi: 10.1021/acs.langmuir.8b00757 pmid: 29709197 |
[13] |
Wang Zhipeng, Rutjes F P J T, Van Hest J C M. pH responsive polymersome Pickering emulsion for simple and efficient Janus polymersome fabrication[J]. Chemical Communications, 2014,50(93): 14550-14553.
doi: 10.1039/C4CC07048H |
[14] |
Liu Kaihong, Jiang Jianzhong, Cui Zhenggang, et al. pH-responsive Pickering emulsions stabilized by silica nanoparticles in combination with a conventional zwitterionic surfactant[J]. Langmuir, 2017,33(9): 2296-2305.
doi: 10.1021/acs.langmuir.6b04459 pmid: 28191963 |
[15] |
Pei Xiaopeng, Zhai Kankan, Wang Chao, et al. Polymer brush graft-modified starch-based nanoparticles as Pickering emulsifiers[J]. Langmuir, 2019,35(22): 7222-7230.
doi: 10.1021/acs.langmuir.9b00413 pmid: 31070380 |
[16] | Zhang Yongmin, Ren Xiaofei, Guo Shuang, et al. CO2-switchable Pickering emulsion using functionalized silica nanoparticles decorated by amine oxide-based surfactants[J]. ACS Sustainable Chemistry & Engineering, 2018,6(2): 2641-2650. |
[17] |
Chen Yongkui, Li Zhiyong, Wang Huiyong, et al. Visible light-controlled inversion of Pickering emulsions stabilized by functional silica microspheres[J]. Langmuir, 2018,34(8): 2784-2790.
doi: 10.1021/acs.langmuir.7b03822 pmid: 29382203 |
[18] |
Yang Hui, Hou Qingfeng, Wang Shujuan, et al. Magnetic-responsive switchable emulsions based on Fe3O4@SiO2-NH2 nanoparticles[J]. Chemical Communications, 2018,54(76): 10679-10682.
doi: 10.1039/C8CC04811H |
[19] |
Zhao Chunhua, Tan Junjun, Li Wei, et al. Ca2+ Ion responsive Pickering emulsions stabilized by PSSMA nanoaggregates [J]. Langmuir, 2013,29(47): 14421-14428.
doi: 10.1021/la4035535 pmid: 24188032 |
[20] |
Jiang Qiuyan, Sun Ning, Li Qiuhong, et al. Redox-responsive Pickering emulsions based on silica nanoparticles and electr chemical active fluorescent molecules[J]. Langmuir, 2019,35(17): 5848-5854.
doi: 10.1021/acs.langmuir.9b00250 pmid: 30964688 |
[21] |
Wang Feng, Yu Xiaoyun, Yang Zhouxiaoshuang., et al. Dual pH- and light-responsive amphiphilic random copolymer nanomicelles as particulate emulsifiers to stabilize the oil/water interface[J]. Journal of Physical Chemistry C, 2018,122(33): 18995-19003.
doi: 10.1021/acs.jpcc.8b05065 |
[22] |
Zeng Ting, Deng Amin, Yang Duanguang, et al. Triple-responsive Pickering emulsion stabilized by core cross-linked supramolecular polymer particles[J]. Langmuir, 2019,35(36): 11872-11880.
doi: 10.1021/acs.langmuir.9b02341 pmid: 31453701 |
[23] |
Ren Gaihuan, Zheng Xiaoyang, Gu Hui, et al. Temperature and CO2 dual-responsive Pickering emulsions using Jeffamine M2005-modified cellulose nanocrystals[J]. Langmuir, 2019,35(42): 13663-13670.
doi: 10.1021/acs.langmuir.9b02497 pmid: 31549513 |
[24] | Zhang Wanqing, Jiang Jianzhong, Cui Zhenggang. Interactions between surfactants and nanoparticles and the construction of smart systems(III)Interactions between oppositely charged nanoparticles and ionic surfactants(ii)Construction of stimuli-responsive Pickering emulsions and Pickering foams by using ordinary commercial surfactants[J]. China Surfactant Detergent & Cosmetics, 2019,49(9): 561-571. |
[25] |
Yang Hengquan, Zhou Ting, Zhang Wenjun. A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion[J]. Angewandte Chemie International Edition, 2013,52(29): 7455-7459.
doi: 10.1002/anie.201300534 |
[26] |
Tu Fuquan, Lee D. Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties[J]. Journal of the American Chemical Society, 2014,136(28): 9999-10006.
doi: 10.1021/ja503189r pmid: 24791976 |
[27] |
Zhu Yue, Fu Ting, Liu Kaihong, et al. Thermoresponsive Pickering emulsions stabilized by silica nanoparticles in combination with alkyl polyoxyethylene ether nonionic surfactant[J]. Langmuir, 2017,33(23): 5724-5733.
doi: 10.1021/acs.langmuir.7b00273 pmid: 28510456 |
[28] |
Binks B P, Rodrigues J A. Double inversion of emulsions by using nanoparticles and a di-chain surfactant[J]. Angewandte Chemie International Edition, 2007,46(28): 5389-5392.
doi: 10.1002/(ISSN)1521-3773 |
[29] | Jessop P G, Heldebrant D J, Li Xiaowang, et al. Reversible nonpolar-to-polar solvent[J]. Nature, 2005,436(7054): 1102-1102. |
[30] |
Liu Yingxin, Jessop P G, Cunningham M, et al. Switchable surfactants[J]. Science, 2006,313(5789): 958-960.
doi: 10.1126/science.1128142 |
[31] |
Jiang Jianzhong, Zhu Yue, Cui Zhenggang, et al. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant[J]. Angewandte Chemie International Edition, 2013,52(47): 12373-12376.
doi: 10.1002/anie.201305947 |
[32] |
Glasing J, Jessop P G, Champagne P, et al. Graft-modified cellulose nanocrystals as CO2-switchable Pickering emulsifiers[J]. Polymer Chemistry, 2018,9(28): 3864-3872.
doi: 10.1039/C8PY00417J |
[33] | Shi Yunlei, Xiong Dazhen, Li Zhiyong, et al. Highly efficient and reversible inversion of a Pickering emulsion triggered by CO2/N2 at ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2018,6(11): 15383-15390. |
[34] |
Chen Zhaowei, Zhou Li, Bing Wei, et al. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis[J]. Journal of the American Chemical Society, 2014,136(20): 7498-7504.
doi: 10.1021/ja503123m pmid: 24784766 |
[35] | Zhang Qing, Bai Ruixue, Guo Ting, et al. Switchable Pickering emulsions stabilized by awakened TiO2 nanoparticle emulsifiers using UV/dark actuation[J]. ACS Applied Materials & Interfaces, 2015,7(33): 18240-18246. |
[36] |
Bai Ruixue, Xue Longhui, Dou Rongkun, et al. Light-triggered release from Pickering emulsions stabilized by TiO2 nanoparticles with tailored wettability[J]. Langmuir, 2016,32(36): 9254-9264.
doi: 10.1021/acs.langmuir.6b02329 |
[37] |
Hwang K, Singh P, Aubry N. Destabilization of Pickering emulsions using external electric fields[J]. Electrophoresis, 2010,31(5): 850-859.
doi: 10.1002/elps.v31:5 |
[38] |
Kim E, Stratford K, Clegg P S, et al. Field-induced breakup of emulsion droplets stabilized by colloidal particles[J]. Physical Review E, 2012,85(2): 020403.
doi: 10.1103/PhysRevE.85.020403 |
[39] |
Jiang Jianzhong, Ma Yuxuan, Cui Zhenggang, et al. Pickering emulsions responsive to CO2/N2 and light dual stimuli at ambient temperature[J]. Langmuir, 2016,32(34): 8668-8675.
doi: 10.1021/acs.langmuir.6b01475 pmid: 27477238 |
[40] |
Raju R R, Liebig F, Klemke B, et al. pH-responsive magnetic Pickering Janus emulsions[J]. Colloid and Polymer Science, 2018,296(6): 1039-1046.
doi: 10.1007/s00396-018-4321-z |
[41] |
Xie Chunyan, Meng Shixin, Xue Longhui, et al. Light and magnetic dual-responsive Pickering emulsion micro-reactors[J]. Langmuir, 2017,33(49): 14139-14148.
doi: 10.1021/acs.langmuir.7b03642 |
[42] |
Huang Jianping, Yang Hengquan. A pH-switched Pickering emulsion catalytic system:high reaction efficiency and facile catalyst recycling[J]. Chemical Communications, 2015,51(34): 7333-7336.
doi: 10.1039/C5CC01211B |
[43] | Yu Mingying, Wang Jing, Yang Cheng, et al. Advances in the applications of Pickering emulsion in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2019,49(6): 398-402. |
[44] |
Sun Guanqing, Li Zifu, Ngai T. Inversion of particle-stabilized emulsions to form high-internal-phase emulsions[J]. Angewandte Chemie International Edition, 2010,49(12): 2163-2166.
doi: 10.1002/anie.v49:12 |
[45] |
Jiao Bo, Shi Aimin, Wang Qiang, et al. High-internal-phase Pickering emulsions stabilized solely by peanut-protein-isolate microgel particles with multiple potential applications[J]. Angewandte Chemie International Edition, 2018,57(30): 9274-9278.
doi: 10.1002/anie.201801350 |
[46] | Liu Hongguo, Sun Dejun, Hao Jingcheng. New colloid and interface chemistry [M]. Beijing: Chemical Industry Press, 2016. |
[47] |
Li Yanan, Liu Xubo, Zhang Zhen, et al. Adaptive structured Pickering emulsions and porous materials based on cellulose nanocrystal surfactants[J]. Angewandte Chemie International Edition, 2018,57(41): 13560-13564.
doi: 10.1002/anie.201808888 |
[48] |
Li Zifu, Ming Tian, Wang Jianfang, et al. High internal phase emulsions stabilized solely by microgel particles[J]. Angewandte Chemie International Edition, 2009,48(45): 8490-8493.
doi: 10.1002/anie.v48:45 |
[49] |
Liu Hao, Wei Zengjiang, Hu Meng, et al. Fabrication of degradable polymer microspheres via pH-responsive chitosan-based Pickering emulsion photopolymerization[J]. RSC Advances, 2014,4(55): 29344-29351.
doi: 10.1039/C4RA01660B |
[50] |
Tatry M C, Qiu Y, Lapeyre V, et al. Sugar-responsive Pickering emulsions mediated by switching hydrophobicity in microgels[J]. Journal of Colloid and Interface Science, 2020,561:481-493.
doi: 10.1016/j.jcis.2019.11.023 |
[1] | 周媛, 杨秀全, 张军, 白亮, 吴志宇. 不同酯化度烷基糖苷磺基琥珀酸酯盐的合成与性能[J]. 日用化学工业(中英文), 2023, 53(7): 765-772. |
[2] | 田淑杰, 高伟. 轻质原油采出液低温破乳剂优选及作用机理[J]. 日用化学工业(中英文), 2023, 53(7): 773-780. |
[3] | 张佩亮, 燕永利, 吕博, 曹玉霞, 吴春生, 贺炳成. CaCO3纳米晶体稳定非水相泡沫实验研究[J]. 日用化学工业(中英文), 2023, 53(6): 642-648. |
[4] | 丁正青, 吴颖异, 王维运, 黄旭娟, 蔡照胜. 羟乙基纤维素/纳米纤维素稳定的Pickering乳液及其流变特性研究[J]. 日用化学工业(中英文), 2023, 53(3): 245-252. |
[5] | 姜春燕, 敖先权, 曹阳, 陈鸿, 李松鸿. Mg2+,Al3+和Fe3+对氟磷灰石表面性质的影响[J]. 日用化学工业(中英文), 2023, 53(3): 253-259. |
[6] | 陈宁茹, 张若淇, 韩旭, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅲ)——Pickering乳液[J]. 日用化学工业(中英文), 2023, 53(11): 1257-1265. |
[7] | 沈嘉骏,宦静静,王碧佳,隋晓锋. 纳米甲壳素稳定蜂蜡油凝胶Pickering乳液的性能研究[J]. 日用化学工业, 2022, 52(8): 844-850. |
[8] | 张倩洁,沈兴亮,盛涛涛,张婉萍,许建营. 十六烷基三甲基溴化铵-珍珠粉相互作用及其稳定乳液的双重相转变[J]. 日用化学工业, 2022, 52(5): 468-475. |
[9] | 谢鑫,王伟浩,刘环宇,孙梦梦,李沁园,贾露凡,孟涛. Alg@TiO2微球稳定的Pickering乳液用做防晒乳成分的研究[J]. 日用化学工业, 2022, 52(3): 229-236. |
[10] | 陈云博,李昕怡,毛志平,徐红,隋晓锋. 纳米甲壳素基Pickering乳液辅助构筑相变微胶囊[J]. 日用化学工业(中英文), 2022, 52(12): 1286-1292. |
[11] | 宦静静,王碧佳,毛志平,隋晓锋. 纳米甲壳素的快速制备及其乳化性能研究[J]. 日用化学工业(中英文), 2022, 52(10): 1081-1087. |
[12] | 沈永强,孙亚娟,杨成,王靖. 桃仁分离蛋白颗粒的制备及其乳化性能研究[J]. 日用化学工业, 2021, 51(9): 809-816. |
[13] | 于惠,朱永峰,惠爱平,杨芳芳,王爱勤. 凹凸棒石在Pickering乳液制备中的应用研究进展[J]. 日用化学工业, 2021, 51(7): 670-678. |
[14] | 方振兴,王希英,吴婧,曾颖,潘虹,谢振华. 火山矿泥Pickering乳液的制备及其pH稳定性[J]. 日用化学工业, 2021, 51(6): 506-512. |
[15] | 何怡静,许虎君. 月桂酰基赖氨酸稳定的Pickering乳液的制备研究[J]. 日用化学工业, 2021, 51(5): 413-420. |
|