日用化学工业 ›› 2021, Vol. 51 ›› Issue (10): 1011-1017.doi: 10.3969/j.issn.1001-1803.2021.10.013
收稿日期:
2021-01-11
修回日期:
2021-09-26
出版日期:
2021-10-22
发布日期:
2021-10-21
通讯作者:
李淑荣,罗利霞
基金资助:
Pu Sudan,Liu Yanru,Meng Peijun,Li Shurong(),Luo Lixia(
)
Received:
2021-01-11
Revised:
2021-09-26
Online:
2021-10-22
Published:
2021-10-21
Contact:
Shurong Li,Lixia Luo
摘要:
随着人们健康生活意识的不断提升,化妆品中铅、汞等重金属元素超标引发的健康问题受到了高度关注,其检测方法也不断推陈出新。文章综述了化妆品中铅、汞元素检测的原子吸收光谱、原子荧光光谱、电感耦合等离子体发射光谱、电感耦合等离子体质谱、电化学分析等常规方法以及汞分析、X射线荧光光谱、激光诱导击穿光谱等快速检测方法的研究现状及进展,同时比较了不同方法间灵敏度和准确度的差异,为化妆品中铅、汞检测方法创新提供思路。
中图分类号:
蒲苏丹,刘燕茹,孟佩俊,李淑荣,罗利霞. 化妆品中铅、汞元素检测方法的研究进展[J]. 日用化学工业, 2021, 51(10): 1011-1017.
Pu Sudan,Liu Yanru,Meng Peijun,Li Shurong,Luo Lixia. Research progress on detection methods of lead and mercury in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2021, 51(10): 1011-1017.
[1] | Borowska S, Brzóska M M. Metals in cosmetics: implications for human health[J]. Journal of Applied Toxicology, 2015, 35(6):51-72. |
[2] | Zhong Hongxia, Zhang Xiaoxiong. Discussion on the detection methods and current situation of heavy metals in cosmetics[J]. Chemical Management, 2020 (15):37-38. |
[3] | China Food and Drug Administration. Safety and Technical Standards for Cosmetics 2015[S]. Beijing: Standards Press of China, 2016. |
[4] | Liu Yanyan, Yin Lifang, Chen Ying. The safety of plastic materials is reflected in packaging design[J]. Plastics Technology, 2020, 48(9):141-144. |
[5] | Saadatzadeh A, Afzalan S, Zadehdabagh R, et al. Determination of heavy metals (lead, cadmium, arsenic, and mercury) in authorized and unauthorized cosmetics[J]. Cuta Ocular Toxi, 2019, 38(3):207-211. |
[6] | Atanaskova E, Nikolovski G, Ulčar I, et al. Examination of the content of heavy metals using hair samples in dogs of urban areas of Macedonia[J]. Veterinary World, 2020, 4(8):368-370. |
[7] |
Djedjibegovic J, Marjanovic A, Tahirovic D, et al. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina[J]. Scientific Reports, 2020, 10(1):13238.
doi: 10.1038/s41598-020-70205-9 pmid: 32764674 |
[8] |
Mark X B, Anneschel S D, Yeongeon P, et al. Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea[J]. Environmental Monitoring and Assessment, 2018, 190(5):1-16.
doi: 10.1007/s10661-017-6336-1 |
[9] | Lin Hailan, Zhu Rilong, Yu Lei, et al. Determination of arsenic, mercury, selenium, antimony and bismuth in soil and sediment by water bath digestion-atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(5):1528-1533. |
[10] |
Zhang Yuexia, Ge Shanshan, Yang Zhenhua, et al. Heavy metals analysis in chalk sticks based on ICP-AES and their associated health risk[J]. Environmental Science and Pollution Research International, 2020, 27(30):37887-37893.
doi: 10.1007/s11356-020-09884-w pmid: 32617814 |
[11] | Liu Song, Zhou Fuqiang, Li Xuelan, et al. Simultaneous determination of arsenic, lead, cadmium and chromium in Guizhou tea by microwave digestion-ICP-AES method[J]. Food Industry, 2019, 40(12):334-337. |
[12] | Andrea C I, Mario F M, Raúl A G, et al. A novel and simple method for elements determination in aerobiological samples by inductively coupled plasma mass spectrometry (ICP-MS) analysis[J]. Water, Air, & Soil Pollution: An International Journal of Environmental Pollution, 2020, 231(A):6803-6812. |
[13] |
Chittatosh P, Subrata M. Ultra-low-level detection of mercury (Hg 2+) heavy metal carcinogens in aqueous medium using electrochemistry [J]. Materials Today: Proceedings, 2020, 29:1129-1131.
doi: 10.1016/j.matpr.2020.05.336 |
[14] |
Ádám G, Viola H, Péter H, et al. Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore[J]. Sensors, 2018, 18(5):1407.
doi: 10.3390/s18051407 |
[15] |
Yaru C, Gao Feng, Gao Fei, et al. Enhanced stripping voltammetric response of Hg2+, Cu2+, Pb2+ and Cd2+ by ZIF-8 and its electrochemical analytical application[J]. Journal of Electroanalytical Chemistry, 2019, 835:293-300.
doi: 10.1016/j.jelechem.2019.01.053 |
[16] |
In-Sil Y, Jeong-Sook L, Sung-Dan K, et al. Monitoring heavy metals, residual agricultural chemicals and sulfites in traditional herbal decoctions[J]. BMC Complement Altern Med, 2017, 17(1):154.
doi: 10.1186/s12906-017-1646-y |
[17] | Jiři M, Martin A, Anna A, et al. Detection of selected heavy metals and micronutrients in edible insect and their dependency on the feed using XRF spectrometry[J]. Potravinarstvo, 2017, 11(1):725-730. |
[18] |
Yao Shunchun, Zhang Lifeng, Zhu Yeming, et al. Evaluation of heavy metal element detection in municipal solid waste incineration fly ash based on LIBS sensor[J]. Waste Management, 2020, 102:492-498.
doi: S0956-053X(19)30706-8 pmid: 31751921 |
[19] | Tagreed K H, Aseel S J, Hussein T S, et al. Multivariate analysis of toxic heavy metals contents in soil detected by laser induced breakdown spectroscopy[J]. Indian Journal of Public Health Research & Development, 2018, 9(12):933-936. |
[20] |
Liu Junfeng, Sun Hongli, Zheng Yang, et al. Ordered mesoporous silicon doped with HPMo-SiO2 solid phase extraction of trace Pb prior to flame atomic absorption spectrometry determination[J]. Micro & Nano Letters, 2018, 13(5):606-610.
doi: 10.1049/mna2.v13.5 |
[21] | Liu Manman, Yang Mucai, Liang Aiyong. Microwave digestion-graphite furnace atomic absorption spectrometry for the determination of trace lead in cosmetics[J]. Physical Testing and Chemical Analysis Part B: Chemistry, 2018, 54(9):1066-1067. |
[22] | Wu Xiansu, Chen Caijun, Jiang Chanyi. Comparison of flame, graphite furnace and hydride generation-atomic absorption spectrometry for determination of lead content in cosmetics[J]. Chinese Journal of Health Inspection, 2015, 25(9):1326-1328. |
[23] | Zhou Xia, Wang Yanhua, Jiang Xinjie, et al. Simultaneous determination of arsenic, antimony, lead and mercury in cosmetics by microwave digestion-atomic fluorescence spectrometry[J]. Daily Chemical Industry, 2019, 49(11):764-768. |
[24] | Cao Xia, Du Hongfeng, Yong Li, et al. Simultaneous determination of arsenic and mercury in cosmetics by microwave digestion-atomic fluorescence method[J]. Preventive Medicine, 2019, 31(6):643-645. |
[25] |
Tan Xijuan, Wang Zhuming, Wang Zhenliang. A facile acidic digestion method for cosmetic lead and cadmium determination by an inductively coupled plasma atomic emission spectrometer[J]. Journal of Applied Spectroscopy, 2018, 85(4):659-664.
doi: 10.1007/s10812-018-0701-x |
[26] | Yang Yongchao, Sun Yongze, Zhang Chuang, et al. Simultaneous determination of arsenic, lead and cadmium in cosmetics by ICP-OES method[J]. Daily Chemical Industry, 2017, 47(10):598-602. |
[27] | Pang Yanhua, Dong Zhenlin, Na Han, et al. Rapid detection of heavy metals in cosmetics by collision cell-inductively coupled plasma mass spectrometry[J]. Journal of Food Safety and Quality Inspection, 2016, 7(8):3333-3337. |
[28] | Fu Chuanwu, Qiu Ying, Hong Wei. Determination of mercury, arsenic, lead, cadmium and chromium in whitening and freckle cosmetics by ICP-MS method[J]. Fragrance, Flavor and Cosmetics, 2019 (2):45-47, 52. |
[29] |
Chen Weini, Jiang Shiuh-Jen, Chen Yen-Ling, et al. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions[J]. Analytica Chimica Acta, 2015, 860:8-14.
doi: 10.1016/j.aca.2015.01.011 pmid: 25682241 |
[30] |
Puchakayala S, Chen Jianan, Kumar A S, et al. High index facets-Ag nanoflower enabled efficient electrochemical detection of lead in blood serum and cosmetics[J]. Journal of Electroanalytical Chemistry, 2020, 878:114657-114664.
doi: 10.1016/j.jelechem.2020.114657 |
[31] | Wu Zhishan, Song Wei, Xu Danke, et al. Determination of mercury in cosmetics by gold nanoparticle modified screen printing electrode[J]. Environmental Chemistry, 2017, 36(4):885-891. |
[32] | Feng Ming, Zhang Gaixia, Zhao Xiaoli, et al. Construction and application of propyl gallate imprinted electrochemical sensor[J]. Chemistry Bulletin, 2019, 82(3):243-250. |
[33] | Xing Cunhuai, Zhang Gaixia, Feng Ming, et al. Construction and performance study of tert-butyl hydroquinone imprinted electrochemical sensor[J]. Journal of Shanxi University (Natural Science Edition), 2019, 42(2):384-394. |
[34] | Simon J R, Yasir J N, Zhang W J, et al. Chloroantimonate electrochemistry in dichloromethane[J]. Electrochimica Acta, 2020, 354:692-700. |
[35] | Fousseni S, Quentin R, Moussa B, et al. Palladium electrochemistry in the choline chloride-urea deep eutectic solvent at gold and glassy carbon electrodes[J]. Electrochimica Acta, 2020, 345:165-184. |
[36] |
Leonardo D A F, Ízylla Oliveira de L, Julia D O F, et al. New strategies for the simultaneous voltammetric quantification of Pb and Zn in hair cosmetics samples employing chemically modified composite electrodes[J]. Measurement, 2018, 125:651-658.
doi: 10.1016/j.measurement.2018.05.042 |
[37] |
Illyas M I, Mohamad I S, Mustaffa A, et al. Chloroplatinum(II) complex-modified MWCNTs paste electrode for electrochemical determination of mercury in skin lightening cosmetics[J]. Electrochimica Acta, 2017, 253:463-471.
doi: 10.1016/j.electacta.2017.09.092 |
[38] |
Wang Wan, Bao Ning, Yuan Wenfeng, et al. Simultaneous determination of lead, arsenic, and mercury in cosmetics using a plastic based disposable electrochemical sensor[J]. Microchemical Journal, 2019, 148:240-247.
doi: 10.1016/j.microc.2019.05.011 |
[39] | Xia Hui, Chen Qian. The application of photochemical vapor generation method for the visual detection of mercury in water samples[J]. Chemical Research and Application, 2020, 32(1):163-168. |
[40] |
Tatur V V, Tikhomirov A A, Abramochkin A I, et al. Analyzer of mercury vapors in atmospheric air based on a mercury capillary lamp with natural isotope composition[J]. Atmospheric and Oceanic Optics, 2019, 32(6):701-705.
doi: 10.1134/S1024856019060174 |
[41] | Wang Bo, Liu Jixin, Zhang Xiaohong, et al. Development of solid sampling-semi-quantitative mercury rapid measuring instrument for cosmetics[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7):1025-1031. |
[42] | Liang Jianfeng, Li Ya, Liang Yanni, et al. Portable X-ray fluorescence spectrometry for rapid detection of mercury in cosmetics[J]. Daily Chemical Industry, 2021, 51(1):68-72, 77. |
[43] | Zhu Li, Wang Jin, Yin Lihui. Rapid detection of 15 heavy metals in cosmetics by X-ray fluorescence spectrometry[J]. Analysis Laboratory, 2017, 9(36):1084-1087. |
[44] | Rehan I, Gondal M A, Rehan K, et al. Spectral diagnosis of health hazardous toxins in face foundation powders using laser induced breakdown spectroscopy and inductively coupled plasma-optical emission spectroscopy (ICP-OES)[J]. Talanta, 2020, 217:7-26. |
[45] | Liu Yuanchao, Chu Yanwu, Hu Zhenlin, et al. High-sensitivity determination of trace lead and cadmium in cosmetics using laser-induced breakdown spectroscopy with ultrasound-assisted extraction[J]. Microchemical Journal, 2020, 158:322-326. |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|