日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (12): 1489-1496.doi: 10.3969/j.issn.2097-2806.2024.12.011
收稿日期:
2024-02-02
修回日期:
2024-11-26
出版日期:
2024-12-22
发布日期:
2024-12-25
基金资助:
Shiyu Deng1,2,Jianming Jin1,2,*(),Hua Wu1,2
Received:
2024-02-02
Revised:
2024-11-26
Online:
2024-12-22
Published:
2024-12-25
Contact:
* E-mail: 摘要:
阿魏酸是广泛存在于植物中的酚类化合物,其主要来源是从植物中提取,另外也可以通过生物合成法和化学合成法得到。而生物合成阿魏酸是最有前景的工业生产方法。在化妆品应用中,阿魏酸具有多种生物活性。阿魏酸常作为美白功效成分,其通过竞争性抑制酪氨酸酶的活性以减少黑色素的生成。阿魏酸也可以作为抗氧化剂,它能消除细胞自由基、抑制ROS的产生、参与多种细胞信号通路和调节抗氧化酶活性而发挥抗氧化作用。阿魏酸也具有很好的防晒功效,通过吸收紫外线,抑制UVB诱导的基质金属蛋白酶MMP-2和MMP-9活性来减少紫外辐射造成的皮肤伤害;阿魏酸也对人表皮角质形成细胞和成纤维细胞具有保护作用。阿魏酸还能有效延缓衰老,主要通过降低胶原酶和透明质酸酶活性来抑制透明质酸的降解,诱导前胶原和透明质酸的合成而发挥功效。阿魏酸对特应性皮炎和银屑病等皮肤炎症性疾病的有一定的治疗作用,其通过抑制多种炎症因子和细胞信号通路发挥抗炎作用。阿魏酸也具有广谱的抗菌效果,其作用机制是破坏细菌和真菌细胞膜,导致细胞质膜渗漏,最终导致细胞死亡。另外,阿魏酸还能促进皮肤伤口愈合和再生。但阿魏酸相对比较差的稳定性限制了其在化妆品中的应用。
中图分类号:
邓诗雨, 金建明, 吴华. 阿魏酸在化妆品中的应用研究进展[J]. 日用化学工业(中英文), 2024, 54(12): 1489-1496.
Shiyu Deng, Jianming Jin, Hua Wu. Research progress on the application of ferulic acid in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2024, 54(12): 1489-1496.
[1] | Zhang X, Gao Z P. Progress in the study of ferulic acid[J]. Modern Chinese Medicine, 2020: 138-147. |
[2] | Zhang L H, Fu C H, Ou Y Y. Evaluation of the efficacy and preparation of ferulic acid[J]. Hainan Medical Journal, 2014, 25 (18) : 2710-2712. |
[3] | Saija A, Tomaino A, Lo Cascio R, et al. Ferulic and caffeic acids as potential protective agents against photooxidative skin damage[J]. Journal of the Science of Food and Agriculture, 1999, 79 (3) : 476-480. |
[4] |
Zdunska K, Dana A, Kolodziejczak A, et al. Antioxidant properties of ferulic acid and its possible application[J]. Skin Pharmacology and Physiology, 2018, 31 (6) : 332-336.
doi: 10.1159/000491755 pmid: 30235459 |
[5] |
Graf E. Antioxidant potential of ferulic acid[J]. Free Radical Biology and Medicine, 1992, 13 (4) : 435-448.
doi: 10.1016/0891-5849(92)90184-i pmid: 1398220 |
[6] | Truong H T, Do M V, Huynh L D, et al. Ultrasound-assisted, base-catalyzed, homogeneous reaction for ferulic acid production from gamma-oryzanol[J]. Journal of Chemistry, 2018, 2018: 1-9. |
[7] | Gopalan N, Nampoothiri K M. Biorefining of wheat bran for the purification of ferulic acid[J]. Biocatalysis and Agricultural Biotechnology, 2018, 15: 304-310. |
[8] | Dupoiron S, Lameloise M L, Pommet M, et al. A novel and integrative process: From enzymatic fractionation of wheat bran with a hemicellulasic cocktail to the recovery of ferulic acid by weak anion exchange resin[J]. Industrial Crops and Products, 2017, 105: 148-155. |
[9] | Liu Z L, Wang J, Shen P N, et al. Microwave-assisted extraction and high-speed counter-current chromatography purification of ferulic acid from radix Angelicae sinensis[J]. Separation and Purification Technology, 2006, 52 (1) : 18-21. |
[10] | Kroon P A, Garcia-Conesa M T, Fillingham I J, et al. Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases[J]. Journal of the Science of Food and Agriculture, 1999, 79 (3) : 428-434. |
[11] | Grabber J H, Hatfield R D, Ralph J, et al. Ferulate cross-linking in cell-walls isolated from maize cell-suspensions[J]. Phytochemistry, 1995, 40 (4) : 1077-1082. |
[12] | Ou S, Kwok K C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods[J]. Journal of the Science of Food and Agriculture, 2004, 84 (11) : 1261-1269. |
[13] | Flourat A L, Combes J, Bailly-Maitre-Grand C, et al. Accessing p-hydroxycinnamic acids: Chemical synthesis, biomass recovery, or engineered microbial production?[J]. Chemistry Sustainability Energy Materials, 2021, 14 (1) : 118-129. |
[14] | Chenault J D J F. Side reactions in the phase transfer catalyzed witting-horner synthesis: A convinent method of preparation of hydroxycinnamic acids[J]. Synthetic Communications, 1984, 40 (4) : 1077-1082. |
[15] | Rainha J, Gomes D, Rodrigues L R, et al. Synthetic biology approaches to engineer Saccharomyces cerevisiae towards the industrial production of valuable polyphenolic compounds[J]. Life-Basel, 2020, 10 (5) : 56-77. |
[16] |
Zhou Z, Zhang X, Wu J, et al. Targeting cofactors regeneration in methylation and hydroxylation for high level production of ferulic acid[J]. Metabolic Engineering, 2022, 73: 247-255.
doi: 10.1016/j.ymben.2022.08.007 pmid: 35987433 |
[17] | Yang M, Meng H, Li X, et al. Coculture engineering for efficient production of vanillyl alcohol in Escherichia coli[J]. An International Journal on Agricultural Biotechnology, 2022, 3 (4) : 292-300. |
[18] |
Kim Y J, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future[J]. Cellular and Molecular Life Sciences, 2005, 62 (15) : 1707-1723.
doi: 10.1007/s00018-005-5054-y pmid: 15968468 |
[19] |
Qian W, Liu W, Zhu D, et al. Natural skin-whitening compounds for the treatment of melanogenesis (review)[J]. Experimental and Therapeutic Medicine, 2020, 20 (1) : 173-185.
doi: 10.3892/etm.2020.8687 pmid: 32509007 |
[20] | Rahman M M, Rahaman M S, Islam M R, et al. Role of phenolic compounds in human disease: Current knowledge and future prospects[J]. Molecules, 2021, 27 (1) : 233-269. |
[21] | Georgiev L, Chochkova M, Totseva I, et al. Anti-tyrosinase, antioxidant and antimicrobial activities of hydroxycinnamoylamides[J]. Medicinal Chemistry Research, 2013, 22 (9) : 4173-4182. |
[22] | Saibabu V, Fatima Z, Khan L A, et al. Therapeutic potential of dietary phenolic acids[J]. Advances in Pharmacological Sciences, 2015, 2015: 823539. |
[23] |
Staniforth V, Huang W C, Aravindaram K, et al. Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms[J]. Journal of Nutritional Biochemistry, 2012, 23 (5) : 443-451.
doi: 10.1016/j.jnutbio.2011.01.009 pmid: 21543204 |
[24] |
Saint-Leger D, Leveque J L, Verschoore M. The use of hydroxy acids on the skin: Characteristics of C8-lipohydroxy acid[J]. Journal of Cosmetic Dermatology, 2007, 6 (1) : 59-65.
pmid: 17348998 |
[25] |
Srinivasan M, Sudheer A R, Menon V P. Ferulic acid: Therapeutic potential through its antioxidant property[J]. Journal of Clinical Biochemistry and Nutrition, 2007, 40 (2) : 92-100.
doi: 10.3164/jcbn.40.92 pmid: 18188410 |
[26] | Shahidi F, Chandrasekara A. Hydroxycinnamates and their in vitro and in vivo antioxidant activities[J]. Phytochemistry Reviews, 2010, 9 (1) : 147-170. |
[27] |
Chowdhury S, Ghosh S, Das A K, et al. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy[J]. Frontiers in Pharmacology, 2019, 10: 27.
doi: 10.3389/fphar.2019.00027 pmid: 30804780 |
[28] | Li D, Rui Y X, Guo S D, et al. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives[J]. Life Sciences, 2021, 284:119921. |
[29] |
Sacca P, Meiss R, Casas G, et al. Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer[J]. British Journal of Cancer, 2007, 97 (12) : 1683-1689.
doi: 10.1038/sj.bjc.6604081 pmid: 18026199 |
[30] | Ma Z C, Hong Q, Wang Y G, et al. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways[J]. Biological and Pharmaceutical Bulletin, 2010, 33 (1) : 29-34. |
[31] |
Chowdhury S, Ghosh S, Rashid K, et al. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats[J]. Food and Chemical Toxicology, 2016, 97: 187-198.
doi: S0278-6915(16)30326-X pmid: 27621051 |
[32] |
Badawy D, El-Bassossy H M, Fahmy A, et al. Aldose reductase inhibitors zopolrestat and ferulic acid alleviate hypertension associated with diabetes: Effect on vascular reactivity[J]. Canadian Journal of Physiology and Pharmacology, 2013, 91 (2) : 101-107.
doi: 10.1139/cjpp-2012-0232 pmid: 23458193 |
[33] | Bezerra G S N, Pereira M a V, Ostrosky E A, et al. Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR[J]. Joural of Thermal Analysis and Calorimetry, 2017, 127 (2) : 1683-1691. |
[34] |
Murray J C, Burch J A, Streilein R D, et al. A topical antioxidant solution containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused by ultraviolet irradiation[J]. Journal of the American Academy of Dermatology, 2008, 59 (3) : 418-425.
doi: 10.1016/j.jaad.2008.05.004 pmid: 18603326 |
[35] |
Oresajo C, Stephens T, Hino P D, et al. Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin against ultraviolet-induced photodamage in human skin[J]. Journal of Cosmetic Dermatology, 2008, 7 (4) : 290-297.
doi: 10.1111/j.1473-2165.2008.00408.x pmid: 19146606 |
[36] | Chaudhary A, Jaswal V S, Choudhary S, et al. Ferulic acid: A promising therapeutic phytochemical and recent patents advances[J]. Recent Patents on Inflammation and Allergy Drug Discovery, 2019, 13 (2) : 115-123. |
[37] |
Pluemsamran T, Onkoksoong T, Panich U. Caffeic acid and ferulic acid inhibit UVA-induced matrix metalloproteinase-1 through regulation of antioxidant defense system in keratinocyte hacat cells[J]. Photochemistry and Photobiology, 2012, 88 (4) : 961-968.
doi: 10.1111/j.1751-1097.2012.01118.x pmid: 22360712 |
[38] |
Hahn H J, Kim K B, Bae S, et al. Pretreatment of ferulic acid protects human dermal fibroblasts against ultraviolet A irradiation[J]. Annals of Dermatology, 2016, 28 (6) : 740-748.
doi: 10.5021/ad.2016.28.6.740 pmid: 27904274 |
[39] | Peres D D A, Sarruf F D, De Oliveira C A, et al. Ferulic acid photoprotective properties in association with UV filters: Multifunctional sunscreen with improved SPF and UVA-PF[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 185: 46-49. |
[40] |
Ongchai S, Somnoo O, Kongdang P, et al. TGF-β1 upregulates the expression of hyaluronan synthase 2 and hyaluronan synthesis in culture models of equine articular chondrocytes[J]. Journal of Veterinary Science, 2018, 19 (6) : 735-743.
doi: 10.4142/jvs.2018.19.6.735 pmid: 30041292 |
[41] | Park H J, Cho J H, Hong S H, et al. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells[J]. Journal of Natural Medicines, 2018, 72 (1) : 127-135. |
[42] | Matsui M S, Hsia A, Miller J D, et al. Non-sunscreen photoprotection: Antioxidants add value to a sunscreen[J]. Journal of Investigative Dermatology Symposium Proceedings, 2009, 14 (1) : 56-59. |
[43] | Borges A, Saavedra M J, Simoes M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria[J]. The Journal of Bioadhesion and Biofilm Research, 2012, 28 (7) : 755-767. |
[44] | Teodoro G R, Ellepola K, Seneviratne C J, et al. Potential use of phenolic acids as anti-Candida agents: A review[J]. Frontiers in Microbiology, 2015, 6: 1420. |
[45] | Huang W C, Tsai T H, Huang C J, et al. Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro[J]. Food and Function, 2015, 6 (8) : 2550-2560. |
[46] | Patzke H, Schieber A. Growth-inhibitory activity of phenolic compounds applied in an emulsifiable concentrate-ferulic acid as a natural pesticide against Botrytis cinerea[J]. Food Research Internatioal, 2018, 113: 18-23. |
[47] | Shen R Y, Wang H J, Wu K Z, et al. Characterization and antimicrobial properties of ferulic acid grafted self-assembled bacterial cellulose-chitosan membranes[J]. Journal of Applied Polymer Science, 2021, 138 (33) : e50824. |
[48] |
Panwar R, Pemmaraju S C, Sharma A K, et al. Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm[J]. Microbial Pathogenesis, 2016, 95: 21-31.
doi: S0882-4010(16)30043-2 pmid: 26930164 |
[49] | Contardi M, Lenzuni M, Fiorentini F, et al. Hydroxycinnamic acids and derivatives formulations for skin damages and disorders: A review[J]. Pharmaceutics, 2021, 13 (7) : 999. |
[50] |
Wu S, Pang Y, He Y, et al. A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds[J]. Biomedicine and Pharmacotherapy, 2021, 140: 111741.
doi: 10.1016/j.biopha.2021.111741 pmid: 34087696 |
[51] | Hawkes J E, Yan B Y, Chan T C, et al. Discovery of the il-23/il-17 signaling pathway and the treatment of psoriasis[J]. The Journal of Immunology, 2018, 201 (6) : 1605-1613. |
[52] | Lo H Y, Li C C, Cheng H M, et al. Ferulic acid altered il-17a/il-17ra interaction and protected against imiquimod-induced psoriasis-like skin injury in mice[J]. Food and Chemical Toxicology, 2019, 129: 365-375. |
[53] | Sangeeta D, Digvijay S, Pradeep T D, et al. Healing potential of ferulic acid on dermal wound in diabetic animals[J]. Journal of Molecular Modeling, 2015, 1: 1-16. |
[54] | Ghaisas M M, Kshirsagar S B, Sahane R S. Evaluation of wound healing activity of ferulic acid in diabetic rats[J]. International Wound Journal, 2012, 11 (5) : 523-532. |
[55] |
Song Y, Zeng R, Hu L L, et al. In vivo wound healing and in vitro antioxidant activities of Bletilla striata phenolic extracts[J]. Biomedicine and Pharmacotherapy, 2017, 93: 451-461.
doi: S0753-3322(17)31315-X pmid: 28667914 |
[56] | Carbone C, Caddeo C, Grimaudo M A, et al. Ferulic acid-NLC with Lavandula essential oil: a possible strategy for wound-healing?[J]. Nanomaterials, 2020, 10 (5) : 898-916. |
[57] |
Valacchi G, Grisci G, Sticozzi C, et al. Wound healing properties of hyaluronan derivatives bearing ferulate residues[J]. Journal of Materials Chemistry B, 2015, 3 (35) : 7037-7045.
doi: 10.1039/c5tb00661a pmid: 32262706 |
[58] | Tsai C Y, Woung L C, Yen J C, et al. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing[J]. Carbohydrate Polymers, 2016, 135: 308-315. |
[1] | 石美玲, 陈娟博, 李皓, 黄员琴, 张启清, 曾飒, 孟涛. 二氧化硅包载对维生素C稳定性提高的研究[J]. 日用化学工业(中英文), 2024, 54(9): 1015-1022. |
[2] | 刘萍, 程磊. 氢化物发生-非色散原子荧光光谱法测定粉饼化妆品中Pb,As和Hg含量[J]. 日用化学工业(中英文), 2024, 54(9): 1140-1144. |
[3] | 杨婷,李华文,许训,郭红辉,邹堂斌,夏恩琴. 拟微绿球藻发酵肽的抗衰老作用研究[J]. 日用化学工业(中英文), 2024, 54(8): 921-929. |
[4] | 吴姣娇, 章为, 王彦超, 裴新荣. 3种熊果苷的安全性评价进展及其化妆品法规管理现状[J]. 日用化学工业(中英文), 2024, 54(7): 853-858. |
[5] | 史海云, 华岩. 品牌人格化IP在化妆品包装设计中的应用[J]. 日用化学工业(中英文), 2024, 54(7): 859-865. |
[6] | 王昌钊, 李子豪, 王一欣, 杨玥. UPLC-MS/MS法测定化妆品中5种美白剂[J]. 日用化学工业(中英文), 2024, 54(7): 873-878. |
[7] | 张科明, 刘雪年, 邓鸣, 鲁毅翔, 许杨彪. UPLC-Q-TOF测定化妆品中9种硝基苯类化合物[J]. 日用化学工业(中英文), 2024, 54(6): 744-750. |
[8] | 陈来成, 陈冬杰, 邹洁, 丁红, 叶宇鹏, 杨占红. 金线莲发酵液的抗氧化和美白功效研究[J]. 日用化学工业(中英文), 2024, 54(6): 656-662. |
[9] | 顾宇翔, 周羽, 刘恕. 护肤类化妆品功效评价理化试验方法的现状和分析[J]. 日用化学工业(中英文), 2024, 54(6): 727-732. |
[10] | 宋雨芯, 许琳琳, 佟瑶, 董坤, 何聪芬. 基于热糖化法体外生化抗糖化评价体系的优化与应用[J]. 日用化学工业(中英文), 2024, 54(5): 558-565. |
[11] | 宋阳, 吕永博, 任晗堃, 彭娇龙. 药用层孔菌发酵液控油及收缩毛孔机理及功效研究[J]. 日用化学工业(中英文), 2024, 54(5): 566-573. |
[12] | 陈琼, 张铮, 苏哲, 王钢力, 涂家生, 孙春萌. 化妆品纳米原料物料属性及其功效相关性[J]. 日用化学工业(中英文), 2024, 54(5): 588-595. |
[13] | 黄浩婷, 陈正东, 陈子婷, 杨雨曼, 谢志洁, 刘佐仁. 国际视野下社会组织参与化妆品治理的模式比较研究[J]. 日用化学工业(中英文), 2024, 54(5): 596-604. |
[14] | 张嘉琪, 吴凡, 韩雨晴, 刘琦, 王俊杰, 盘瑶. 多光子成像技术及其在化妆品评估中的应用[J]. 日用化学工业(中英文), 2024, 54(5): 605-613. |
[15] | 曾广丰, 王志元, 谢建军, 王璐, 侯颖烨, 董洁. 液相色谱-串联质谱法快速测定化妆品中游离的乙醇胺类物质[J]. 日用化学工业(中英文), 2024, 54(5): 614-620. |
|