日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (4): 472-480.doi: 10.3969/j.issn.1001-1803.2023.04.015
收稿日期:
2022-04-24
修回日期:
2023-04-03
出版日期:
2023-04-22
发布日期:
2023-04-25
Chen Panjin,Shen Zhengchao,Du Zhenxia*()
Received:
2022-04-24
Revised:
2023-04-03
Online:
2023-04-22
Published:
2023-04-25
Contact:
* E-mail: 摘要:
VOCs排放控制是当前控制臭氧浓度的主要手段之一。美甲化妆品近几年使用量逐年增加,由于其含有较多挥发性溶剂,其释放VOCs清单研究很有必要。文章通过市场调研采集了使用量较大的25个具有代表性的指甲油样品,并建立了不同类型的美甲化妆品中总VOCs及VOCs清单的检测方法:首先将一定量样品置于烘箱(105 ℃)测定产品总挥发量,利用卡尔费休法测定水含量,顶空-气质联用(HS-GC-MS)对其中VOCs进行定性定量检测。水性型指甲油、有机溶剂型指甲油、营养油和卸甲水的平均VOCs含量分别为0.314 5,0.366 9,0.049 6,0.904 2 g/g;4类美甲化妆品中主要VOCs类别分别为胺类(N-甲基吡咯烷酮、三乙胺)、酯类(乙酸乙酯)、萜烯类((±)-柠檬烯)和醇类(2-苯氧乙醇、甲醇、乙醇);有机溶剂型指甲油中还含有少量苯系物:甲苯、间二甲苯、1,2,4-三甲基苯;卸甲水中还含有18.39%丙酮。根据不同类型指甲油的VOCs排放清单及其含量,计算了其对臭氧生成的贡献,单位质量美甲化妆品O3生成量为0.000 061 2~1.15 g/g,其中,单位质量有机溶剂型指甲油的O3贡献率最大。各类美甲化妆品释放的VOCs类别中OFP贡献最大的分别为胺类、苯系物、醇类,其中,苯系物具有高反应活性,对O3贡献较大。根据呼吸暴露计算美甲化妆品中VOCs对人体的非致癌危害商(HQ)范围为6.66×10-6~8.64×10-4,危害指数(HI)<1,健康风险评价结果表明对成年女性不存在非致癌风险。该研究为管控美甲化妆品VOCs释放清单提供了基础数据。
中图分类号:
陈攀金, 沈正超, 杜振霞. 美甲化妆品中VOCs臭氧贡献及其健康风险评价[J]. 日用化学工业(中英文), 2023, 53(4): 472-480.
Chen Panjin, Shen Zhengchao, Du Zhenxia. Ozone contribution of VOCs in nail cosmetics and its health risk assessment[J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 472-480.
表 1
6种VOCs的日暴露量和风险评价参数[31]"
VOC物种 | EC/(mg/m3) | RfC/(mg/m3) | HQ | HI=∑HQi | |
---|---|---|---|---|---|
水性型指甲油 | 三乙胺 | 4.17 | 0.007 | 8.34×10-4 | 8.34×10-4 |
有机溶剂型指甲油 | 间二甲苯 | 0.09 | 0.1 | 8.79×10-4 | 1.78×10-3 |
1,2,4-三甲苯 | 0.05 | 0.06 | 8.64×10-4 | ||
甲苯 | 0.03 | 5 | 6.66×10-6 | ||
甲醇 | 0.12 | 2 | 2.50×10-5 | ||
乙醛 | 0.004 6 | 0.009 | 9.25×10-7 | ||
卸甲水 | 甲苯 | 0.36 | 5 | 7.14×10-5 | 6.36×10-3 |
甲醇 | 31.43 | 2 | 6.29×10-3 |
[1] | Ministry of Ecology and Environment of the People’s Republic of China. The Ministry of Ecology and Environment held a regular press conference in April[EB/OL]. (2020-04-22)[2022-05-10]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202005/t20200515_779537.html. |
[2] | Liu S K, Cai S, Chen Y, et al. The effect of pollutional haze on pulmonary function[J]. Journal of Thoracic Disease, 2016, 8(1): 41-56. |
[3] | Chen L, Zhao C, Guan M Y, et al. Ozone pollution in China and its adverse health effects[J]. Environmental and Occupational Medicine, 2017, 34(11): 1025-1030. |
[4] | Dong W X, Chen Z M. The effect of elevated ozone concentration on plants and insects[J]. Acta Ecologica Sinica, 2006 (11): 3878-3884. |
[5] | Guo F T. Effects of low concentration ozone exposure on the body[J]. Occupational Medicine, 1989 (1): 44-46. |
[6] |
Meng Z, Dabdub D, Seinfeld J H. Chemical coupling between atmospheric ozone and particulate matter[J]. Science, 1997, 277(5322): 116-119.
doi: 10.1126/science.277.5322.116 |
[7] |
Atkinson R. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 1998, 34(2000): 2063-2101.
doi: 10.1016/S1352-2310(99)00460-4 |
[8] |
Shao M, Zhang Y, Zeng L, et al. Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production[J]. Journal of Environmental Management, 2009, 90(1): 512-518.
doi: 10.1016/j.jenvman.2007.12.008 pmid: 18207632 |
[9] |
Carter W P L, Atkinson R. Computer modeling study of incremental hydrocarbon reactivity[J]. Environmental Science & Technology, 2002, 23(7): 864-880.
doi: 10.1021/es00065a017 |
[10] | Mozaffar A, Zhang Y L, Fan M, et al. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China[J]. Atmospheric Research, 2020, 240(104923): 1-16. |
[11] |
Qiu W Y, Liu Y H, Tan Z F, et al. Calculation of maximum incremental reactivity scales for volatile organic compounds based on typical megacities in China[J]. Chin Sci Bull, 2020, 65(7): 610-621.
doi: 10.1360/TB-2019-0598 |
[12] | Zhang G Q, Jiang D C, Li M, et al. Emission sources and analytical sources of volatile organic compounds in urban atmospheric[J]. Environmental Science & Technology, 2014, 37(S2): 195-200. |
[13] | Ling M, Sun Y M. Thoughts and ways to prevent VOCs pollution in the 13th Five Year Plan period[J]. World Environment, 2016 (6): 27-29. |
[14] |
McDonald B C, de Gouw J A, Gilman J B, et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions[J]. Science, 2018, 359(6377): 760-764.
doi: 10.1126/science.aaq0524 pmid: 29449485 |
[15] | Louis L M, Kavi L K, Boyle M, et al. Biomonitoring of volatile organic compounds (VOCs) among hairdressers in salons primarily serving women of color: A pilot study[J]. Environment International, 2021, 154(106655): 1-16. |
[16] | Bury D, Head J, Keller D, et al. The Threshold of Toxicological Concern (TTC) is a pragmatic tool for the safety assessment: Case studies of cosmetic ingredients with low consumer exposure[J]. Regulatory Toxicology and Pharmacology, 2021, 123(104964): 1-5. |
[17] |
Dinh T V, Kim S Y, Son Y S, et al. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential[J]. Environmental Science and Pollution Research International, 2015, 22(12): 9345-9355.
doi: 10.1007/s11356-015-4092-8 |
[18] | Nematollahi N, Kolev S D, Steinemann A. Volatile chemical emissions from 134 common consumer products[J]. Air Quality, Atmosphere & Health, 2019, 12(11): 1259-1265. |
[19] | Cui R, Mo Z W, Yuan B, et al. Emissions and ozone formation potential of volatile organic compounds (VOCs) from daily chemical products in China[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2272-2281. |
[20] | Wang Z W, Liang W H. A review of research progress of volatile organic compound emissions from household products[J]. Building Science, 2020, 36(2): 153-162. |
[21] | International Organization for Standardization. Paints and varnishes-Determination of density-Part 1: Pycnometer method: ISO 2811-1-2011[S]. Switzerland: Information Handing Services (IHS), 2011. |
[22] | Shen Z C, Zheng Y B, Gao M P, et al. Determination of moisture content in consumer products by Karl Fischer titration and its interfering factors[J]. China Surfactant Detergent & Cosmetics, 2020, 50(4): 282-286. |
[23] | United States Environmental Protection Agency. Determination of volatile organic compounds (VOC) in consumer products and reactive organic compounds in aerosol coating products: CARB Method 310[S]. California: United States Environmental Protection Agency, 2011. |
[24] |
Wang M L, Wang X J, Li B, et al. Pollution characteristics of ambient VOCs and analysis of ozone formation potential in Yantai[J]. Environmental Science & Technology, 2021, 44(S): 210-216.
doi: 10.1021/es902629x |
[25] | Ait-Helal W, Borbon A, Sauvage S, et al. Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation[J]. Atmospheric Chemistry and Physics, 2014, 14(19): 10439-10464. |
[26] | Gao M P, Wang H L, Liu W W, et al. VOCs emission characteristics of water-based architectural coatings and the influence on the atmospheric environment in China[J]. Environmental Science, 2021, 42(12): 5698-5712. |
[27] | Carter W. Development of the saprc-07 chemical mechanism and updated ozone reactivity scales[R]. California: California Air Resources Board, 2010. |
[28] | Li L, Li H, Wang X Z. Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China[J]. Environmental Science, 2013, 34(12): 4558-4564. |
[29] | Bo X, Guo J, Wan R, et al. Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China[J]. Environmental Pollution, 2022, 298(118816): 81-91. |
[30] |
Kim J H, Kim T, Yoon H, et al. Health risk assessment of dermal and inhalation exposure to deodorants in Korea[J]. Science of the Total Environment, 2018, 625: 1369-1379.
doi: 10.1016/j.scitotenv.2017.12.282 |
[31] | United States Environmental Protection Agency. Integrated risk information system (IRIS)[EB/OL]. (2009)[2022-05-10]. http://www.epa.gov/iris/index.html. |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 胡翠翠, 周代红, 陈欣菀, 钟佳伶, 茆灿泉. 中药复方MHC-20的抗化脓性链球菌功效与作用机制探究[J]. 日用化学工业(中英文), 2024, 54(3): 282-289. |
[3] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[4] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[5] | 张婉萍, 彭祺, 张冬梅, 郑时莲, 蒋汶, 顾理浩. 4-取代酚诱导化学性白斑的机制及研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 320-328. |
[6] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[7] | 塔娜, 冯孟鑫, 高家敏, 张凤兰, 王钢力. 潜在内分泌干扰风险防晒剂的监管及其使用情况分析[J]. 日用化学工业(中英文), 2024, 54(3): 337-343. |
[8] | 周文瑞, 贺建彪, 焦倩, 王紫迪, 苏芊芊, 贾焱. O/W乳化体系化妆品感官评价与仪器分析相关性研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 344-352. |
[9] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[10] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[11] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[12] | 张红菱, 程琳, 王海燕, 罗飞亚, 张会亮, 孙磊. 应用DPRA替代方法评价3种香豆素类化合物的皮肤致敏性[J]. 日用化学工业(中英文), 2024, 54(2): 156-160. |
[13] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[14] | 李慧怡, 周悦, 吴谦, 杜丽镝, 谢嘉颖, 谭建华. 化妆品防晒黑功效评价方法研究[J]. 日用化学工业(中英文), 2024, 54(2): 168-174. |
[15] | 彭心宇, 梁海燕, 温紫娴, 李美停, 李鑫, 邱晓锋. 流变调节剂在二元喷雾产品中的影响[J]. 日用化学工业(中英文), 2024, 54(2): 181-187. |
|