日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (3): 320-328.doi: 10.3969/j.issn.2097-2806.2024.03.011
张婉萍1,2,彭祺1,2,张冬梅1,2,郑时莲1,2,蒋汶1,顾理浩1,2,*()
收稿日期:
2023-04-27
修回日期:
2024-03-06
出版日期:
2024-03-22
发布日期:
2024-03-25
基金资助:
Wanping Zhang1,2,Qi Peng1,2,Dongmei Zhang1,2,Shilian Zheng1,2,Wen Jiang1,Lihao Gu1,2,*()
Received:
2023-04-27
Revised:
2024-03-06
Online:
2024-03-22
Published:
2024-03-25
Contact:
*Tel.:+86-13501783241, E-mail: 摘要:
4-取代酚是一类广泛应用于制药、农药、染料、食品添加剂以及化妆品中的有机化合物。4-取代酚在化妆品中的应用主要是由于其与酪氨酸的结构上的相似性,使其具有独特的抑制酪氨酸酶活性以及抑制皮肤中黑色素形成的效果,因此包括熊果苷、白藜芦醇等化学物质在内,已有多种4-取代酚作为美白成分用于化妆品中。但包括杜鹃醇在内的4-取代酚同时也具有一定安全风险,大量研究表明许多4-取代酚具有黑素细胞毒性,且不同的取代基也会对黑素细胞毒性的诱导途径、毒性强弱等产生不同的影响,使用不当可能会诱发白癜风(Vitiligo)和白斑病(Leukoderma)的产生,对消费者的健康造成损害。本文综述了4-取代酚及杜鹃醇的美白及黑素细胞毒性机制,以及不同国家发生白斑病的案例,以期为开发更安全的有美白效果的化学物质提供参考。
中图分类号:
张婉萍, 彭祺, 张冬梅, 郑时莲, 蒋汶, 顾理浩. 4-取代酚诱导化学性白斑的机制及研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 320-328.
Wanping Zhang, Qi Peng, Dongmei Zhang, Shilian Zheng, Wen Jiang, Lihao Gu. Mechanism and research progress of chemical leukoderma induced by 4-substituted phenols[J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 320-328.
表1
化学性白斑诱发物质"
类别 | 物质名称 | CAS |
---|---|---|
苯酚衍生物 | 4-苄氧基苯酚 | 103-16-2 |
1,4-苯二酚(氢醌) | 123-31-9 | |
4-甲氧基苯酚 | 150-76-5 | |
4-乙氧基苯酚 | 622-62-8 | |
4-叔丁基苯酚 | 98-54-4 | |
4-叔戊基苯酚 | 80-46-6 | |
4-苯基苯酚 | 92-69-3 | |
4-辛基苯酚 | 1806-26-4 | |
4-壬基苯酚 | 104-40-5 | |
丁基羟基甲苯 | 128-37-0 | |
丁基羟基茴香醚 | 25013-16-5 | |
4-甲基苯酚 | 106-44-5 | |
4-(4-羟苯基)-2-丁醇(杜鹃醇) | 501-96-2 | |
4-(4-羟基苯基)-2-丁酮(覆盆子酮) | 5471-51-2 | |
儿茶酚衍生物 | 4-叔丁基儿茶酚 | 98-29-3 |
4-甲基儿茶酚 | 452-86-8 | |
4-异丙基儿茶酚 | 2138-43-4 | |
儿茶酚(邻苯二酚) | 120-80-9 | |
巯基化合物 | 半胱胺 | 60-23-1 |
N-(2-巯基乙基)-二甲胺盐酸盐 | 13242-44-9 | |
磺酸 | — | |
胱胺二盐酸盐 | 56-17-7 | |
3-氨基丙硫醇盐酸盐 | 7211-54-3 | |
光学制剂 | 毒扁豆碱 | 57-47-6 |
氟磷酸二异丙酯 | 55-91-4 | |
塞替派 | 52-24-4 | |
呋喃硝基鸟苷 | — | |
系统性疾病药物 | 氯喹 | 54-05-7 |
氟非那嗪 | 69-23-8 | |
其他 | 汞制剂 | — |
桂皮醛 | 14371-10-9 | |
砷 | 7440-38-2 | |
苯甲醇 | 100-51-6 | |
过氧化苯甲酰 | 94-36-0 | |
皮质类固醇 | — | |
壬二酸 | 123-99-9 | |
苯基缩水甘油醚 | 122-60-1 | |
聚氯乙烯塑料 | 25702-80-1 | |
酸性红 73 | 5413-75-2 | |
罗丹明B | 81-88-9 | |
亮红R | 5858-77-5 | |
卡莫司汀 | 154-93-8 | |
丙烯酸酯类 | — | |
镍 | 7440-02-0 | |
氟尿嘧啶 | 51-21-8 | |
维甲酸 | 302-79-4 | |
2, 4-二硝基氯苯 | 97-00-7 | |
方酸二正丁酯 | 2892-62-8 | |
对苯二胺 | 106-50-3 |
表3
已经报道的RD诱导白斑病的机制"
已经报道的RD诱导白斑病的机制 | 参考文献 |
---|---|
RD诱导黑素细胞的细胞毒性,且依赖于酪氨酸酶 | [ |
在较高浓度的酪氨酸酶中,RD会代谢成RD-醌和RD儿茶酚等其他氧化产物 | [ |
RD诱导的黑素细胞的细胞毒性与内质网应激和细胞凋亡有关 | [ |
ROS,特别是·OH是在酪氨酸酶的RD氧化过程中产生的,并可能通过氧化性DNA损伤诱导细胞毒性 | [ |
ROS的产生可能与RD代谢物与谷胱甘肽和半胱氨酸的结合有关 | [ |
UVB暴露可能通过诱导内质网应激增加RD诱导的黑素细胞毒性 | [ |
RD在小鼠皮肤中部分代谢为RK,ADH可能参与了RD的氧化 | [ |
表4
部分诱导白斑病的化合物及其机制"
化学物质名称 | CAS号 | 机制 | 参考文献 | 化学物质名称 | CAS号 | 机制 | 参考文献 | |
---|---|---|---|---|---|---|---|---|
4-苯氧基苯酚 | 831-82-3 | i | [ | 4-苄氧基苯酚 | 103-16-2 | i | [ | |
4-己氧基苯酚 | 18979-55-0 | i | [ | 4-苄基苯酚 | 101-53-1 | i | [ | |
4-甲基苯酚 | 106-44-5 | i | [ | 4-甲氧基苯酚 | 150-76-5 | i | [ | |
4-苯基苯酚 | 92-69-3 | i | [ | 4-叔戊基苯酚 | 80-46-6 | i | [ | |
1,4-苯二酚(氢醌) | 123-31-9 | ii | [ | 4-辛基苯酚 | 1806-26-4 | — | [ | |
4-乙氧基苯酚 | 622-62-8 | — | [ | 4-壬基苯酚 | 104-40-5 | — | [ | |
4-叔丁基苯酚 | 98-54-4 | iii | [ |
[1] | Schmidt C. Temprian therapeutics: Developing a gene-based treatment for vitiligo[J]. Nature, 2020. DOI: 10.1038/d41586-020-01808-5. |
[2] |
Boniface K, Seneschal J, Picardo M, et al. Vitiligo: Focus on clinical aspects, immunopathogenesis, and therapy[J]. Clin. Rev. Allergy Immunol., 2018, 54 (1) : 52-67.
doi: 10.1007/s12016-017-8622-7 |
[3] |
Ghosh S. Chemical leukoderma: What’s new on etiopathological and clinical aspects?[J]. Indian Journal of Dermatology, 2010, 55 (3) : 255-258.
doi: 10.4103/0019-5154.70680 |
[4] |
O’Reilly K E, Patel U, Chu J, et al. Chemical leukoderma[J]. Dermatology Online Journal, 2011, 17 (10) : 29.
pmid: 22031655 |
[5] |
Bonamonte D, Vestita M, Romita P, et al. Chemical leukoderma[J]. Dermatitis, 2016, 27 (3) : 90-99.
doi: 10.1097/DER.0000000000000167 pmid: 27172302 |
[6] |
Boissy R E, Manga P. On the etiology of contact/occupational vitiligo[J]. Pigment Cell Research, 2004, 17 (3) : 208-214.
pmid: 15140065 |
[7] |
Ghosh S, Mukhopadhyay S. Chemical leucoderma: A clinico-aetiological study of 864 cases in the perspective of a developing country[J]. British Journal of Dermatology, 2009, 160 (1) : 40-47.
doi: 10.1111/bjd.2008.160.issue-1 |
[8] | Hu Jidong, Wang Hairui. Research progress on the active ingredients and detection methods of whitening cosmetics[J]. Detergent & Cosmetics, 2022, 45 (8) : 48-52. |
[9] |
Fukuda Y, Nagano M, Futatsuka M. Occupational leukoderma in workers engaged in 4‐(p‐hydroxyphenyl)‐2‐butanone manufacturing[J]. Journal of Occupational Health, 1998, 40 (2) : 118-122.
doi: 10.1539/joh.40.118 |
[10] |
Oliver E A, Schwartz L, Warren L H. Occupational leukoderma: Preliminary report[J]. Journal of the American Medical Association, 1939, 113 (10) : 927-928.
doi: 10.1001/jama.1939.72800350003010a |
[11] |
James O, Mayes R W, Stevenson C J. Occupational vitiligo induced by p-tert-butylphenol, a systemic disease?[J]. Lancet, 1977, 310 (8050) : 1217-1219.
doi: 10.1016/S0140-6736(77)90451-2 |
[12] |
Bajaj A K, Misra A, Misra K, et al. The azo dye solvent yellow 3 produces depigmentation[J]. Contact Dermatitis, 2000, 42 (4) : 237-238.
pmid: 10750858 |
[13] |
Nabai H, Mehregan A H. Rubber-induced depigmentation secondary to a wrist splint[J]. Cutis, 1994, 53 (6) : 295-296.
pmid: 8070282 |
[14] |
Nishigori C, Aoyama Y, Ito A, et al. Guide for medical professionals (i.E., dermatologists) for the management of rhododenol-induced leukoderma[J]. Journal of Dermatology, 2015, 42 (2) : 113-128.
doi: 10.1111/jde.2015.42.issue-2 |
[15] | Matsunaga K, Suzuki K, Suzuki T, et al. Review report 2018 on rhododenol-induced leukoderma[J]. Jpn. J. Dermatol, 2018, 128 (11) : 2255-2267. |
[16] |
Matsunaga K, Suzuki K, Ito A, et al. Rhododendrol-induced leukoderma update Ⅰ: Clinical findings and treatment[J]. Journal of Dermatology, 2021, 48 (7) : 961-968.
doi: 10.1111/jde.v48.7 |
[17] |
Ghosh S. Chemical vitiligo: A subset of vitiligo[J]. Indian Journal of Dermatology, 2020, 65 (6) : 443-449.
doi: 10.4103/ijd.IJD_291_20 pmid: 33487697 |
[18] |
Beekwilder J, van der Meer I M, Sibbesen O, et al. Microbial production of natural raspberry ketone[J]. Biotechnology Journal, 2007, 2 (10) : 1270-1279.
pmid: 17722151 |
[19] |
Mohamed H E, Abo E D M, Mesbah N M, et al. Raspberry ketone preserved cholinergic activity and antioxidant defense in obesity induced alzheimer disease in rats[J]. Biomed Pharmacother, 2018, 107: 1166-1174.
doi: S0753-3322(18)33456-5 pmid: 30257330 |
[20] |
Fukuda Y, Nagano M, Tsukamoto K, et al. In vitro studies on the depigmenting activity of 4- (p‐hydroxyphenyl) -2‐butanone[J]. Journal of Occupational Health, 1998, 40 (2) : 137-142.
doi: 10.1539/joh.40.137 |
[21] |
Fukuda Y, Nagano M, Arimatsu Y, et al. An experimental study on depigmenting activity of 4- (p-hydroxyphenyl) -2-butanone in c57 black mice[J]. Journal of Occupational Health, 1998, 40 (2) : 97-102.
doi: 10.1539/joh.40.97 |
[22] |
Lee C S, Joo Y H, Baek H S, et al. Different effects of five depigmentary compounds, rhododendrol, raspberry ketone, monobenzone, rucinol and AP736 on melanogenesis and viability of human epidermal melanocytes[J]. Experimental Dermatology, 2016, 25 (1) : 44-49.
doi: 10.1111/exd.12871 pmid: 26440747 |
[23] |
Kim M, Baek H S, Lee M, et al. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of gadd45[J]. Toxicology In Vitro, 2016, 32: 339-346.
doi: 10.1016/j.tiv.2016.02.003 pmid: 26867644 |
[24] | Nagata T, Ito S, Itoga K, et al. Specific cytotoxicities of rhododenol and raspberry ketone on B16 melanoma cell by increasing intracellular reactive oxygen species levels[J]. Journal of Dermatological Science, 2016, 84 (1) : 82. |
[25] |
Ito S, Hinoshita M, Suzuki E, et al. Tyrosinase-catalyzed oxidation of the leukoderma-inducing agent raspberry ketone produces (e) -4-(3-oxo-1-butenyl) -1, 2-benzoquinone: Implications for melanocyte toxicity[J]. Chemical Research in Toxicology, 2017, 30 (3) : 859-868.
doi: 10.1021/acs.chemrestox.7b00006 |
[26] | Sugumaran M, Umit K, Evans J, et al. Oxidative oligomerization of dbl catechol, a potential cytotoxic compound for melanocytes, reveals the occurrence of novel ionic diels-alder type additions[J]. International Journal of Molecular Sciences, 2020, 21 (18). DOI: 10.3390/ijms21186774. |
[27] | Musa M M. Enzymatic production of both enantiomers of rhododendrol[J]. Asian Journal of Chemistry, 2014, 26 (20) : 6719. DOI: 10.14233/ajchem.2014.16581. |
[28] |
Tanemura A, Yang L, Yang F, et al. An immune pathological and ultrastructural skin analysis for rhododenol-induced leukoderma patients[J]. Journal of Dermatological Science, 2015, 77 (3) : 185-188.
doi: 10.1016/j.jdermsci.2015.01.002 pmid: 25676426 |
[29] |
Sasaki M, Kondo M, Sato K, et al. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism[J]. Pigment Cell Melanoma Res., 2014, 27 (5) : 754-763.
doi: 10.1111/pcmr.2014.27.issue-5 |
[30] |
Kasamatsu S, Hachiya A, Nakamura S, et al. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold[J]. Journal of Dermatological Science, 2014, 76 (1) : 16-24.
doi: 10.1016/j.jdermsci.2014.07.001 pmid: 25082450 |
[31] |
Ito S, Gerwat W, Kolbe L, et al. Human tyrosinase is able to oxidize both enantiomers of rhododendrol[J]. Pigment Cell Melanoma Res., 2014, 27 (6) : 1149-1153.
doi: 10.1111/pcmr.2014.27.issue-6 |
[32] | Ito S, Okura M, Nakanishi Y, et al. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: Production of rd-pheomelanin and covalent binding with thiol proteins[J]. Pigment Cell Melanoma Res., 2015, 28 (3) : 295-306. |
[33] |
Ito S, Ojika M, Yamashita T, et al. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6, 7-dione, the putative ultimate toxic metabolite: Implications for melanocyte toxicity[J]. Pigment Cell Melanoma Res., 2014, 27 (5) : 744-753.
doi: 10.1111/pcmr.2014.27.issue-5 |
[34] |
Goto N, Tsujimoto M, Nagai H, et al. 4- (4-hydroxyphenyl) -2-butanol (rhododendrol)-induced melanocyte cytotoxicity is enhanced by uvb exposure through generation of oxidative stress[J]. Experimental Dermatology, 2018, 27 (7) : 754-762.
doi: 10.1111/exd.2018.27.issue-7 |
[35] |
Arase N, Yang L, Tanemura A, et al. The effect of rhododendrol inhibition of NF-κB on melanocytes in the presence of tyrosinase[J]. Journal of Dermatological Science, 2016, 83 (2) : 157-159.
doi: 10.1016/j.jdermsci.2016.05.002 pmid: 27174091 |
[36] |
Yang L, Yang F, Wataya-Kaneda M, et al. 4- (4-hydroroxyphenyl)-2-butanol (rhododendrol) activates the autophagy-lysosome pathway in melanocytes: Insights into the mechanisms of rhododendrol-induced leukoderma[J]. Journal of Dermatological Science, 2015, 77 (3) : 182-185.
doi: 10.1016/j.jdermsci.2015.01.006 |
[37] |
Ito S, Okura M, Wakamatsu K, et al. The potent pro-oxidant activity of rhododendrol-eumelanin induces cysteine depletion in B16 melanoma cells[J]. Pigment Cell Melanoma Res., 2017, 30 (1) : 63-67.
doi: 10.1111/pcmr.2017.30.issue-1 |
[38] |
Okura M, Yamashita T, Ishii-Osai Y, et al. Effects of rhododendrol and its metabolic products on melanocytic cell growth[J]. Journal of Dermatological Science, 2015, 80 (2) : 142-149.
doi: 10.1016/j.jdermsci.2015.07.010 pmid: 26282085 |
[39] |
Miyaji A, Gabe Y, Kohno M, et al. Generation of hydroxyl radicals and singlet oxygen during oxidation of rhododendrol and rhododendrol-catechol[J]. Journal of Clinical Biochemistry and Nutrition, 2017, 60 (2) : 86-92.
doi: 10.3164/jcbn.16-38 pmid: 28366986 |
[40] |
Takagi R, Kawano M, Nakamura K, et al. T-cell responses to tyrosinase-derived self-peptides in patients with leukoderma induced by rhododendrol: Implications for immunotherapy targeting melanoma[J]. Dermatology, 2016, 232 (1) : 44-49.
doi: 10.1159/000441217 |
[41] |
Fujiyama T, Ikeya S, Ito T, et al. Melanocyte-specific cytotoxic T lymphocytes in patients with rhododendrol-induced leukoderma[J]. Journal of Dermatological Science, 2015, 77 (3) : 190-192.
doi: 10.1016/j.jdermsci.2015.01.017 pmid: 25724360 |
[42] |
Nishioka M, Tanemura A, Yang L, et al. Possible involvement of CCR4+CD8+T cells and elevated plasma CCL22 and CCL17 in patients with rhododenol-induced leukoderma[J]. Journal of Dermatological Science, 2015, 77 (3) : 188-190.
doi: 10.1016/j.jdermsci.2015.02.014 pmid: 25766765 |
[43] |
Inoue S, Katayama I, Suzuki T, et al. Rhododendrol-induced leukoderma update Ⅱ: Pathophysiology, mechanisms, risk evaluation, and possible mechanism-based treatments in comparison with vitiligo[J]. Journal of Dermatology, 2021, 48 (7) : 969-978.
doi: 10.1111/jde.v48.7 |
[44] |
Gu L, Zeng H, Takahashi T, et al. In vitro methods for predicting chemical leukoderma caused by quasi-drug cosmetics[J]. Cosmetics, 2017, 4 (3) : 31.
doi: 10.3390/cosmetics4030031 |
[45] | Nagata T, Ito S, Itoga K, et al. The mechanism of melanocytes-specific cytotoxicity induced by phenol compounds having a prooxidant effect, relating to the appearance of leukoderma[J]. Biomed Research International, 2015. DOI: 10.1155/2015/479798. |
[46] |
Gu L, Fujisawa A, Maeda K. Detection of raspberry ketone after percutaneous absorption of rhododendrol-containing cosmetics and its mechanism of formation[J]. Cosmetics, 2021, 8 (4) : 97.
doi: 10.3390/cosmetics8040097 |
[47] |
Manga P, Sheyn D, Yang F, et al. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo[J]. American Journal of Pathology, 2006, 169 (5) : 1652-1662.
pmid: 17071589 |
[48] |
Kroll T M, Bommiasamy H, Boissy R E, et al. 4-tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: Relevance to vitiligo[J]. Journal of Investigative Dermatology, 2005, 124 (4) : 798-806.
doi: 10.1111/j.0022-202X.2005.23653.x pmid: 15816839 |
[49] |
Smit N P, Peters K, Menko W, et al. Cytotoxicity of a selected series of substituted phenols towards cultured melanoma cells[J]. Melanoma Research, 1992, 2 (5-6) : 295-304.
pmid: 1292781 |
[50] |
Kammeyer A, Willemsen K J, Ouwerkerk W, et al. Mechanism of action of 4-substituted phenols to induce vitiligo and antimelanoma immunity[J]. Pigment Cell Melanoma Res., 2019, 32 (4) : 540-552.
doi: 10.1111/pcmr.2019.32.issue-4 |
[51] | Kim M, Lim K M. Melanocytotoxic chemicals and their toxic mechanisms[J]. Toxicology Research, 2022, 38 (4) : 417-435. |
[52] |
Glassman S J. Vitiligo, reactive oxygen species and T-cells[J]. Clinical Science (London, England: 1979), 2011, 120 (3) : 99-120.
doi: 10.1042/CS20090603 |
[53] | Stratford M R, Ramsden C A, Riley P A. The influence of hydroquinone on tyrosinase kinetics[J]. Bioorg. Med. Chem., 2012, 20 (14) : 4364-4370. |
[54] |
van den Boorn J G, Picavet D I, van Swieten P F, et al. Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy[J]. Journal of Investigative Dermatology, 2011, 131 (6) : 1240-1251.
doi: 10.1038/jid.2011.16 pmid: 21326294 |
[55] |
Spencer M C. Hydroquinone bleaching: Submitted for publication march 6, 1961. This study was approved by the veterans administration hospital, danville, ill. From the department of dermatology, northwestern university medical school, chicago[J]. Archives of Dermatology, 1961, 84 (1) : 131-134.
doi: 10.1001/archderm.1961.01580130137022 |
[56] |
Frenk E, Ott F. Evaluation of the toxicity of the monoethyl ether of hydroquinone for mammalian melanocytes and melanoma cells[J]. Journal of Investigative Dermatology, 1971, 56 (4) : 287-293.
pmid: 5556518 |
[57] |
Yang F, Sarangarajan R, Le Poole I C, et al. The cytotoxicity and apoptosis induced by 4-tertiary butylphenol in human melanocytes are independent of tyrosinase activity[J]. Journal of Investigative Dermatology, 2000, 114 (1) : 157-164.
pmid: 10620132 |
[58] |
Hariharan V, Klarquist J, Reust M J, et al. Monobenzyl ether of hydroquinone and 4-tertiary butyl phenol activate markedly different physiological responses in melanocytes: Relevance to skin depigmentation[J]. Journal of Investigative Dermatology, 2010, 130 (1) : 211-220.
doi: 10.1038/jid.2009.214 pmid: 19657355 |
[59] |
Boyle J, Kennedy C T. Leucoderma induced by monomethyl ether of hydroquinone[J]. Clin. Exp. Dermatol., 1985, 10 (2) : 154-158.
pmid: 3978862 |
[60] |
Dorsey C S. Dermatitic and pigmentary reactions to monobenzyl ether of hydroquinone: Report of two cases[J]. Archives of Dermatology, 1960, 81: 245-248.
pmid: 13817717 |
[61] |
O’Sullivan J J, Stevenson C J. Screening for occupational vitiligo in workers exposed to hydroquinone monomethyl ether and to paratertiary-amyl-phenol[J]. British Journal of Industrial Medicine, 1981, 38 (4) : 381-383.
pmid: 7317302 |
[62] |
Ikeda M, Ohtsuji H, Miyahara S. Two cases of leucoderma, presumably due to nonyl-or octylphenol in synthetic detergents[J]. Industrial Health, 1970, 8 (4) : 192-196.
doi: 10.2486/indhealth.8.192 |
[1] | 胡翠翠, 周代红, 陈欣菀, 钟佳伶, 茆灿泉. 中药复方MHC-20的抗化脓性链球菌功效与作用机制探究[J]. 日用化学工业(中英文), 2024, 54(3): 282-289. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 任洁洁. 逆境胁迫处理后山楂叶总黄酮含量变化及对心肌缺血性大鼠分子机制的研究[J]. 日用化学工业(中英文), 2023, 53(4): 430-436. |
[4] | 谭淇丹, 毕永贤, 刘蕾, 胡雪情, 代晓艳. 化妆品舒缓功效评价的研究现状[J]. 日用化学工业(中英文), 2023, 53(2): 193-201. |
[5] | 杨超, 童志明, 王占生, 陈武. 聚合物及固体颗粒对原油乳状液稳定性影响机制研究[J]. 日用化学工业(中英文), 2023, 53(10): 1156-1165. |
[6] | 程琳,丁梅华,刘琦,赵华. 敏感性皮肤状态的评估[J]. 日用化学工业, 2022, 52(7): 778-784. |
[7] | 武文涛,赵育林,刘亚智. HPLC法测定不同产地栀子提取物的含量[J]. 日用化学工业, 2022, 52(4): 451-456. |
[8] | 程灵,汪建平. 不同品种蝴蝶兰黄酮代谢途径分析[J]. 日用化学工业(中英文), 2022, 52(12): 1293-1299. |
[9] | 车飙,高艳,肖蕾,黄金莲. 口腔溃疡相关因子的研究进展[J]. 日用化学工业, 2021, 51(9): 881-889. |
[10] | 王强,尚佳伟,陆优,陆荣柱. 植物提取物防脱生发机制研究进展[J]. 日用化学工业, 2021, 51(9): 897-902. |
[11] | 蒋建中,余诗洁,崔正刚. 表面活性剂-纳米颗粒相互作用与智能体系的构建(I)——开关性或刺激-响应性表面活性剂与智能表面活性剂体系[J]. 日用化学工业, 2019, 49(7): 426-434. |
[12] | 陈卓仪,刘晓英,郑雅婷,洪婷,刘潭林,杜志云. 皮肤黑色素形成机理与干预机制[J]. 日用化学工业, 2019, 49(2): 113-117. |
[13] | 李倩, 李晨阳, 詹羽娇, 买吾拉江·阿不都热衣木, 徐芳, 赵军. 睡莲花提取物对酪氨酸酶的抑制作用及其动力学研究[J]. 日用化学工业, 2017, 47(4): 219-222. |
|