日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (11): 1388-1394.doi: 10.3969/j.issn.2097-2806.2025.11.003
收稿日期:2024-11-14
修回日期:2025-10-28
出版日期:2025-11-22
发布日期:2025-12-22
基金资助:
Lei Dong1,Huanjin Zou2,Xuefeng Liu1,*(
)
Received:2024-11-14
Revised:2025-10-28
Online:2025-11-22
Published:2025-12-22
摘要: 为实现从非离子型表面活性剂增强土壤洗涤的洗脱液回收和循环再用表面活性剂,设计合成了一种对pH具有可逆开关响应的聚醚型非离子表面活性剂C8-DIB-PEG10,并以该表面活性剂的胶束溶液为洗脱剂,以菲污染的土壤为例,分别考察了土壤中菲的洗除效果、洗脱液的后处理和C8-DIB-PEG10的回收再利用等。结果表明,在25 ℃时C8-DIB-PEG10的临界胶束浓度约为1.01×10-3 mol/L;用HCl将pH调至3.0时,C8-DIB-PEG10因亚胺键断裂形成水溶性良好的PEG10-CHO和正辛胺盐酸盐而丧失表面活性,再用NaOH将pH调至10.0时,C8-DIB-PEG10能够再次形成。土壤中菲的洗脱率可达99.9%,经过HCl诱导C8-DIB-PEG10关闭活性后,PEG10-CHO和正辛胺盐酸盐随水相可以循环再利用,C8-DIB-PEG10的回收率可达96.5%,且再经过3次循环使用,菲的洗脱率和C8-DIB-PEG10的回收率均未出现明显异常改变。
中图分类号:
董雷, 邹欢金, 刘雪锋. pH开关聚醚型非离子表面活性剂及其去除土壤中菲的潜在应用[J]. 日用化学工业(中英文), 2025, 55(11): 1388-1394.
Lei Dong, Huanjin Zou, Xuefeng Liu. Synthesis of pH-switchable nonionic polyether surfactant and its potential application in removing phenanthrene from soil[J]. China Surfactant Detergent & Cosmetics, 2025, 55(11): 1388-1394.
| [1] |
Sakshi , Singh S K, Haritash A K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation[J]. International Journal of Environmental Science and Technology, 2019, 16 (10) : 6489-6512.
doi: 10.1007/s13762-019-02414-3 |
| [2] | Zhang P, Chen Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review[J]. Science of the Total Environment, 2017, 605: 1011-1020. |
| [3] |
Achten C, Andersson J T. Overview of polycyclic aromatic compounds (PAC)[J]. Polycyclic Aromatic Compounds, 2015, 35: 177-186.
pmid: 26823644 |
| [4] |
Wilcke W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil[J]. Geoderma, 2007, 141 (3) : 157-166.
doi: 10.1016/j.geoderma.2007.07.007 |
| [5] | Broman D, Näuf C, Lundbergh I, et al. An in situ study on the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquatic food chain (seston-Mytilus edulis L.-Somateria mollissima L.) from the baltic: An ecotoxicological perspective[J]. Environmental Toxicology and Chemistry, 1990, 9 (4) : 429-442. |
| [6] |
Phillips D H. Fifty years of benzo(a)pyrene[J]. Nature, 1983, 303: 468-472.
doi: 10.1038/303468a0 |
| [7] |
Ahn C K, Woo S H, Park J M. Surface solubilization of phenanthrene by surfactant sorbed on soils with different organic matter contents[J]. Journal of Hazardous Materials, 2010, 177: 799-806.
doi: 10.1016/j.jhazmat.2009.12.104 pmid: 20096994 |
| [8] |
Liu J W, Wei K H, Xu S W, et al. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review[J]. Science of the Total Environment, 2021, 756: 144142.
doi: 10.1016/j.scitotenv.2020.144142 |
| [9] |
Wang S Y, Cai S, Liu X F, et al. Reversible CO2/N2-tuning Krafft temperature of sodium alkyl sulphonates and a proof-of-concept usage in surfactant-enhanced soil washing[J]. Chemical Engineering Journal, 2021, 417: 129316.
doi: 10.1016/j.cej.2021.129316 |
| [10] |
Trellu C, Pechaud N, Oturan E, et al. Remediation of soils contaminated by hydrophobic organic compounds: how to recover extracting agents from soil washing solutions?[J] Journal of Hazardous Materials, 2021, 404: 124137.
doi: 10.1016/j.jhazmat.2020.124137 |
| [11] |
Zeng Y, Zhang M, Lin D, et al. Selective removal of phenanthrene from SDBS or TX100 solution by sorption of resin SP850[J]. Chemical Engineering Journal, 2020, 388: 124191.
doi: 10.1016/j.cej.2020.124191 |
| [12] |
Bai X X, Wang Y, Zheng X, et al. Remediation of phenanthrene contaminated soil by coupling soil washing with Tween 80, oxidation using the UV/S2O82- process and recycling of the surfactant[J]. Chemical Engineering Journal, 2019, 369: 1014-1023.
doi: 10.1016/j.cej.2019.03.116 |
| [13] |
Pan J, Sun L, Liu X, et al. Precipitation-Dissolution switchable surfactants with the potential of simultaneous retrieving of surfactants and hydrophobic organic contaminants from emulsified and micellar eluents[J]. Chemical Engineering Journal, 2023, 458: 141297.
doi: 10.1016/j.cej.2023.141297 |
| [14] |
Liu X Y, Liu X F, Sun L L, et al. Recyclable dynamic imine-based nonionic surfactants and potential use in post-processing of eluted emulsions[J]. Journal of Surfactants and Detergents, 2023, 26: 807-815.
doi: 10.1002/jsde.v26.6 |
| [15] |
Liu Y X, Jessop P G, Cunningham M, et al. Switchable surfactants[J]. Science, 2006, 313: 958-960.
pmid: 16917059 |
| [16] |
Cheng M, Zeng G, Huang D, et al. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds[J]. Chemical Engineering Journal, 2017, 314: 98-113.
doi: 10.1016/j.cej.2016.12.135 |
| [17] |
Takahashi Y, Koizumi N, Kondo Y. Active demulsification of photoresponsive emulsions using cationic-anionic surfactant mixtures[J]. Langmuir, 2016, 32 (3) : 683-688.
doi: 10.1021/acs.langmuir.5b03912 pmid: 26731043 |
| [18] |
Wijnja H, Pignatello J J, Malekani K. Formation of π-π complexes between phenanthrene and model π-acceptor humic subunits[J]. Journal of Environmental Quality, 2004, 33 (1) : 265-275.
pmid: 14964381 |
| [19] |
Li J, Nowak P, Otto S. Dynamic combinatorial libraries: From exploring molecular recognition to systems chemistry[J]. Journal of the American Chemical Society, 2013, 135 (25) : 9222-9239.
doi: 10.1021/ja402586c pmid: 23731408 |
| [20] |
Chen J, Hu X Y, Fang Y, et al. What dominates the interfacial properties of extended surfactants: Amphipathicity or surfactant shape?[J]. Journal of Colloid and Interface Science, 2019, 547: 190-198.
doi: S0021-9797(19)30416-3 pmid: 30954763 |
| [21] |
Wang G T, Wu G L, Wang Z Q, et al. Asymmetric and symmetric bolaform supra-amphiphiles: Formation of imine bond influenced by aggregation[J]. Langmuir, 2014, 30 (6) : 1531-1535.
doi: 10.1021/la405000a pmid: 24460208 |
| [22] |
Li H, Liu X. Rational design of dynamic imine surfactants for oil-water emulsions: Learning from oil-induced reversible dynamic imine bond formation[J]. Journal of Colloid and Interface Science, 2022, 607: 163-170.
doi: 10.1016/j.jcis.2021.08.178 |
| [23] |
Ren G H, Wang L, Chen Q Q, et al. pH switchable emulsions based on dynamic covalent surfactants[J]. Langmuir, 2017, 33 (12) : 3040-3046.
doi: 10.1021/acs.langmuir.6b04546 pmid: 28282144 |
| [24] |
Lin Y, Wang A, Qiao Y, et al. Rationally designed helical nanofibers via multiple non-covalent interactions: fabrication and modulation[J]. Soft Matter, 2010, 6 (9) : 2031-2036.
doi: 10.1039/b926642a |
| [1] | 王婧如,孟祥吉,郑养珍,智丽飞,李晓明,王国永,王艳. 有机硅季铵盐表面活性剂应用研究进展[J]. 日用化学工业(中英文), 2025, 55(11): 1468-1475. |
| [2] | 颜秀花,唐兰勤. 磷酸酯甜菜碱改性ZnO的合成及性能研究[J]. 日用化学工业(中英文), 2025, 55(11): 1402-1407. |
| [3] | 姚雨,邹欢金,刘雪锋. 单十四烷基磷酸钠的pH可逆响应及回收[J]. 日用化学工业(中英文), 2025, 55(10): 1245-1251. |
| [4] | 孙雨石,陈钊,崔正刚,裴晓梅,宋冰蕾. 由双链表面活性剂和二氧化硅纳米颗粒协同稳定的非水乳状液及其性能[J]. 日用化学工业(中英文), 2025, 55(10): 1252-1259. |
| [5] | 孙博,刘笑春,吕宝文,刘辉,李振兴,燕永利. 特种表面活性剂对有机溶剂发泡性能的影响规律[J]. 日用化学工业(中英文), 2025, 55(10): 1268-1274. |
| [6] | 卢国强, 穆蒙, 樊晔, 刘雪锋, 张永民. 含硫酸酯间隔基双子表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2025, 55(9): 1085-1092. |
| [7] | 李一波, 杨闽, 邓庆欢, 王烁石. 稀释微乳液原位降黏与润湿性调控驱油机理研究[J]. 日用化学工业(中英文), 2025, 55(9): 1093-1099. |
| [8] | 汤超, 关娇娇, 张守平, 蔡文良, 林于廉, 谢水祥, 向云飞. 沥青质、胶质和石油酸对乳状液相变与界面性质的影响研究[J]. 日用化学工业(中英文), 2025, 55(9): 1129-1136. |
| [9] | 陈梅, 吴瑶瑶, 夏丹丹, 常晓维, 苏桂珍, 柳晨. 海藻糖脂在清洁体系中的泡沫和温和性研究[J]. 日用化学工业(中英文), 2025, 55(9): 1153-1162. |
| [10] | 张栩源, 李应锋, 曹圣悌, 高春新, 霍月青, 刘晓臣. 烷基二苯醚/烷基苯混合磺酸盐在工业清洗中的应用[J]. 日用化学工业(中英文), 2025, 55(9): 1163-1168. |
| [11] | 刘娱彤, 苑冰冰, 韩甜甜, 陈功, 慕永航, 宋林花, 王子. 表面活性剂与蛋白质在水体系中的相互作用机制及应用[J]. 日用化学工业(中英文), 2025, 55(9): 1198-1206. |
| [12] | 汪哲铖, 郑志辉, 袁旻嘉. 月桂酰谷氨酸钠复配体系的泡沫性能研究[J]. 日用化学工业(中英文), 2025, 55(8): 1035-1041. |
| [13] | 孙琦, 赵征蓉, 徐志成, 张磊, 张路. 延展型阴离子表面活性剂对聚四氟乙烯表面润湿性的影响[J]. 日用化学工业(中英文), 2025, 55(8): 949-960. |
| [14] | 楚艳苹, 高峰, 张伟华, 张磊, 张路. 低界面张力驱油表面活性剂的界面扩张流变研究[J]. 日用化学工业(中英文), 2025, 55(8): 961-968. |
| [15] | 张娟, 刘平, 侯晓康, 高源, 吕其超, 杨子浩. 油藏条件下原油/石油磺酸盐体系的乳化相行为及其影响因素研究[J]. 日用化学工业(中英文), 2025, 55(8): 969-979. |
|